SI.	Topics in JNTU	Modulos and Sub modulos	T a atrona	Suggested books	Domonka
No.	syllabus	Modules and Sub modules	Lecture	Suggested books	Remarks
	•	UNIT-V			r.
5	Complex power	Radius of convergence	L34	T1-Ch5, R1-Ch5	
	series:	Expansion in Taylor's series	L35,36	T1-Ch5, R1-Ch5	
		Maclaurin's series and Laurent series	L37	T1-Ch5, R1-Ch5	
		Singular point	L38	T1-Ch5, R1-Ch5	
		Isolated singular point	L39	T1-Ch5, R1-Ch5	
		Pole of order m	L40	T1-Ch5, R1-Ch5	
		Essential singularity	L41	T1-Ch5, R1-Ch5	
		(Distinction between the real analyticity and complex analyticity)	L42	T1-Ch5, R1-Ch5	
	ł	UNIT-VI	ļ	Į	
6	Contour Integration	Residue	L43	T1-Ch6, R1-Ch6	
		Evaluation of residue by formula and by Laurent series	L44	T1-Ch6, R1-Ch6	
		Residue theorem	L45	T1-Ch6, R1-Ch6	
		Evaluation of integrals of the type	L46	T1-Ch6, R1-Ch6	
		Improper real integrals		T1-Ch6, R1-Ch6	
		$\int_{-\infty}^{\infty} f(x) dx$	L47		
		$\int_{c}^{c+2f} f(\cos_{\#},\sin_{\#})d_{\#}$	L48	T1-Ch6, R1-Ch6	
		$\int_{-\infty}^{\infty} e^{imx} f(x) dx$	L49	T1-Ch6, R1-Ch6	
		Integrals by indentation	L50	T1-Ch6, R1-Ch6	
	;	UNIT-VII		•	
7	Conformal mapping	Transformation by e^z , lmz , z^2 , z^n (n positive integer)	L51	T1-Ch7, R1-Ch7	
		$\sin z, \cos z, z + a/z$	L52	T1-Ch7, R1-Ch7	
		Translation	L53	T1-Ch7, R1-Ch7	
		rotation	L54	T1-Ch7, R1-Ch7	
		inversion and bilinear transformation	L55	T1-Ch7, R1-Ch7	
		fixed point	L56	T1-Ch7, R1-Ch7	
		cross ratio properties	L57	T1-Ch7, R1-Ch7	
		invariance of circles and cross ratio	L58	T1-Ch7, R1-Ch7	
		determination of bilinear transformation mapping 3 given points	L59	T1-Ch7, R1-Ch7	

... not picked from the leaves of any author, but bred amongst the weeds and tares of mine own brain.

F

7.6.11 STUDENT SEMINAR TOPICS

- 1. Special functions and their applications.
- 2. Analytic Functions and their applications.
- 3. Residence Theorem and their applications.

ASSIGNMENT

7.1.12 QUESTION BANK

UNIT-I

UNIT-II

1. State and prove generating function for $J_n(x)$. (DEC 13)

a) Prove that
$$(2n+1) P_n(x) = P_{n+1}^1(x) - P_{n-1}^1(x)$$
.

2. b) Prove that
$$\int_{-1}^{1} x P_n(x) P_{n-1}(x) dx = \frac{2n}{4n^2 - 1}$$
. (DEC 13)

3. Prove that
$$J_4(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) + \left(1 - \frac{24}{x^2}\right) J_0(x)$$
 (May-13)

4. Prove that
$$x^2 \quad J''_{n}(x) = (n^2 - n - x^2) J_n(X) - x J_{n+1}(x)$$
.

(Dec 12)

5. Show that
$$\frac{n}{x} J_n(x) + J_n(x) = J_{n-1}(x)$$
 (Dec 12)

6 Express
$$J_2(x)$$
 interms of $J_0(x) \& J_1(x)$. (Dec 11)

7. S.T.
$$J_{5/2}(x) = \sqrt{\frac{2}{fx}} \left\{ \frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right\}$$
 (Dec 11)

Creation is a drug I can't do without. - Cecil B. DeMille

8. i. Express the following interms of legendre polynomials $4x^3-2x^2-3x+8$.

ii. Evaluate
$$\int_{-1}^{1} x^2 U_3(x) dx$$
. (Dec11)

9. i P. T.
$$Jn(X) = 0$$
 has no repeated roots except at x - 0 (Nov 10)

ii. P. T.
$$\frac{d}{dx} \{x J_1(x)\} = x J_0(x)$$

10. i. S.T.
$$J_{3/2}(x) = \sqrt{\frac{2}{fx}} \{1/x \sin x - \cos x\}$$
 (Nov 10)
ii. S.T. $\int_{0}^{1} \chi^{3} (1 - \sqrt{x})^{5} dx = 2S(8,6)$

11. P.T.
$$xJ_n^1(x) = nJn(x) - (X) - xJn + 1(X)$$
 (Nov 10)

12. Show that
$$J_4(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) + \left(1 - \frac{24}{x^2}\right) J_0(x)$$
 (Feb 08)

13. ii. Prove that
$$\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$$

iii. When n is an integer, show that $J_{-n}(x) = (-1)^n J_n(x)$ (Feb 08)

14. Show that when 'n' is a positive integer, $J_n(x)$ is the coefficient of z^n in the expansion of $\exp\left\{\frac{x}{2}\left(z-\frac{1}{z}\right)\right\}$. (Feb 08, Nov 07, May 01)

15. Prove that J0 (x) =
$$1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} - \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots$$
 (Nov 07)

16. Prove that
$$(2n+1)(1-x^2)P_n^{-1}(x) = n(n+1)(P_{n+1}(x) - P_{n-1}(x))$$
 (Feb, Nov 07)

17. Prove that
$$\frac{d}{dx}(xJ_nJ_{n+1}) = x(J_n^2 - J_{n+1}^2)$$
 (Feb 07)

18. Prove that
$$J\frac{3}{2}(x) = \sqrt{\frac{2}{fx}}(\frac{\sin x}{x} - \cos x)$$
 (Nov 10)

19. Prove that
$$\frac{n}{x}J_n(x) + J_n^{-1}(x) = J_{n-1}(x)$$
 (Feb 07)

20. Prove that
$$\Gamma\left(\frac{1}{n}\right)\Gamma\left(\frac{2}{n}\right)\Gamma\left(\frac{3}{n}\right)$$
..... $\Gamma\left(\frac{n-1}{n}\right) = \frac{(2\Pi)^{\frac{n-1}{2}}}{n^{\frac{1}{2}}}$. (May 11,Feb 07, May 06)

21. Prove that
$$J_0^2 + 2(J_1^2 + J_2^2 + \dots) = 1$$
 (Nov 06, 03)

The merit of originality is not novelty; it is sincerity.

- Thomas Carlyle

22. Prove that
$$J_2 - J_0 = 2J_0^{11}$$
 (Nov, May 06, Apr 05)

23. Show that
$$4J_n^{(1)}(x) = J_{n-2}(x) - 2J_n(x) + J_{n+2}(x)$$
. (May 11, May 06)

24. When n is a positive integer show that
$$J_n(x) = \frac{1}{n} \int_0^f \cos(n_n - x \sin n_n) d_n$$
. (May 06)

25. Write
$$\frac{J_5(x)}{2}$$
 in finite form. (May 06)

26 a) Prove that
$$\int_{-1}^{1} x^{2} P_{n+1} P_{n-1} dx = \frac{2n(n+1)}{(2n+1)(2n-1)(2n+3)}$$

b) Prove that $(1-x^{2})T_{n}^{-1}(x) = nT_{n-1}(x) - nxT_{n}(x)$ (May-13)

27. a) Express
$$x^3-2x^2+x+2$$
 in terms of Legendre polynomial.

b) Show that Pn (x) =
$$\frac{1}{2^n Xn!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
. (Dec12)

28. a) Prove that
$$\frac{1+z}{z\sqrt{1-2xz+z^2}} - \frac{1}{z} = \sum_{n=0}^{r} [P_n(x) + P_{n+1}(x)]z^n$$

b) Prove that (2n+1) $xP_n(x) = (n+1) P_{n+1}(x) + nP_{n-1}(x)$ (Dec12)

29. i. P.T.
$$P_n^1(-1) = (-1)^{n-1} \frac{n(n+1)}{2}$$

ii. Write $T_2(x) + T_1(x) + T_0(x)$ as a polynomial. (Dec11)

5. i. P.T.
$$(1 - x^2) p_n^1(x) = (n+1) \{ x p_n(x) - P_{n+1}(x) \}$$

ii. Express the following interms of legendre polynomials $1 + x - x^2$. (Dec11)
2 3

30. i.
$$S.T. x3 = \frac{2}{5}$$
 P3(x) + $\frac{3}{5}$ P1(x).
ii. Express f(x) = 2x+10x3 interms of legendre polynomials. (Dec11)

- Express f(x) = 2x+10x3 interms of legendre polynomials. ii.
- 31. i. Express x^3+3x^2+4x+3 interms of Legendre polynomial.

ii. Evaluate
$$\int_{0}^{1} x(1-x^{2})^{-\frac{1}{2}}U_{4}(x)dx.$$
 (May 11)
32. If $f(x) = \int_{x}^{0} \int_{|x|^{-\frac{1}{2}}} \frac{1 < x^{-0}}{x < 1} then$ (Nov 10)

- John Saxe

Aurora's Engineering College

S.T.
$$f(x) = \frac{1}{4}P_0(x) + \frac{1}{2}P_1(x) + \frac{5}{16}P_2(x) = \frac{3}{32}P_4(x) + \cdots$$

33. i. P.T. $\int_{-1}^{1} (P_n^1)^2 dx = n(n+1)$
ii. $P_n^1 - P_{n-2}^1 = (2n-1)P_{n-1}$ (Nov 10)
34. i. Evaluate $\int_{-1}^{1} x^4 (1-x^2)^{-1/2} T_2(x) dx$ (Nov 10)
ii. Prove that $\int_{-1}^{1} x^2 P_{n-1}(x) P_{n+1}(x) dx = 0$
35. i. Prove that, for all $x^7 = \frac{116}{429} P_7(x) + \frac{8}{9} P_5(x) + \frac{14}{33} P_3(x) + \frac{1}{3} P_1(x)$

ii. Show that
$$\int_{-1}^{1} \chi^{k} P_{n}(x) dx = 0$$
 for K = 0, 1, 2, n-1 (Nov 10)

36. Show that
$$\int_{-1}^{1} (1-x^2) (P'_n)^2 dx = \frac{2n(n+1)}{(2n+1)}$$
 (Feb 08)

37. Establish the formula
$$P_{n+1}'(x) - P_{n-1}'(x) = (2n+1) P_n(x)$$
 (Feb 08)

4

1

38. i. Prove that
$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0; m \neq n \\ \frac{2}{2n+1}; m = n \end{cases}$$
 (Feb 08, Nov 07, Jan 03)

ii.
$$\int_{-1}^{1} x^{n} P_{n}(x) dx = \frac{2^{n+1} \cdot (n!)^{2}}{(2n+1)!}$$
(Nov 07)

39. Prove that
$$\int_{-1}^{1} x P_n(x) P_{n-1}(x) = \frac{2n}{(4n^2 - 1)}$$
 (Nov 07)

40. Prove that
$$(1-x^2)p_n^{-1}(x) = (n+1)[xP_n(x) - P_{n+1}(x)]$$
 (Feb, Nov 07)

41. Express
$$x^3 + 2x^2 - x - 3$$
 in terms of Legendre Polynomials (Feb 07)

42. Prove that
$$\int_{-1}^{1} (x^2 - 1) P_{n+1} P_n^{-1} dx = \frac{2n(n+1)}{(2n+1)(2n+3)}$$
 (Feb 07)

43. Prove that
$$\frac{1}{\sqrt{1-2tx+t^2}} = P_0(x) + P_1(x)t + P_2(x)t^2 + \dots$$
 (May 11, Nov , May 06, Jan 03)

44. Prove that
$$P_n(0) = 0$$
 for n odd and $P_n(0) = \frac{(-1)^{\frac{n}{2}} n!}{2^n (\frac{n}{2}!)^2}$ if n is even. (Nov, May 06, Apr 05)

Man was made at the end of the week's work when God was tired.

- Mark Twain

II B.Tech.-ECE-I Sem-(2014-15)-M-III

Aurora's Engineering College

45. Show that
$$x^4 = \frac{8}{35}P_4(x) + \frac{4}{7}P_2(x) + \frac{1}{5}P_0(x)$$
 (Nov 06)

46. Show that
$$x^3 = \frac{2}{5}P_3(x) + \frac{3}{5}P_1(x)$$
. (May 06)

47. Using Rodrigue's formula prove that
$$\int_{-1}^{1} x^{m} P_{n}(x) dx = 0 \text{ if } m < n.$$
 (Nov 10)

UNIT-III

- $\begin{cases} \frac{x^3 y(y-ix)}{x^6 + y^2}, z \neq 0 \\ \text{is not differentiable at the orgin.} \end{cases}$ Show that the function f(x) =(Dec 13) 1.
 - Evaluate $\int_{0}^{1} (x^{*} + iy) dz$ along the path y = x and $y = x^{*}$. a)
- Use Cauchy's Integral formula to evaluate $\int_C \frac{z-1}{(z+1)^2(z-2)} dz$, where 'C' is the b) 2 (Dec 13) circle |z - i| = 2. [15]

Find the analytic function whose real part is $e^{2x}(xCos2y - ySin2y)$ 3 a)

Show that the function defined by $f(Z) = \frac{x^3(1+i) - y^3(1-i)}{(x^2 + y^2)}$ at $Z \neq 0$, and f(0) = 0 is b)

continuous and satisfies C.R equations at the origin, but $f^{1}(0)$ does not exist. (May 13)

4. a) Prove that
$$U = x^2 y^2$$
; $V = \frac{y}{x^2 + y^2}$ are harmonic functions of (x,Y) but are not harmonic conjugates.

b) Find an analytic function whose real part is $e^{-x}(x \sin y - \cos y)$ (Dec12)

5. a) find the analytical function whose real part is $r^2Cos2_{\mu} + rSin_{\mu}$.

b) If f(Z) is an analytic function of z, Prove that
$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4f'(z)|^2$$
 (Dec12)

- If W = W + *i*E represents the complex potential for an electric eld & $U = x^2 y^2 + \frac{x}{x^2 + y^2}$, deter 6. i. mine the functionW.
 - ii. If f(z) = u+iv is an analytic function of z & $u-y = e^x$ (cosy-siny) nd f(z) interms of z. (Dec11)
- 7. i. Find whether the function $u = \log |z|^2$ is harmonic. If so, nd the analytic function whose real part is u. Separate the real and imaginary parts of $i^{\log}(1+i)$. ii.

ldeas are the root of creation.							
					-	Ernest	Dimnet

- 8. i. If f = u + iv is analytic in a domain D and uv is constant in D, then prove that f(z) is constant.
 - ii. Find the general and primial values of $\log(1+i\sqrt{3})$.

(Dec11)

(Dec11)

9. i. P.T. The function f(z) dened by f(z) =
$$\begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}; & (z \neq 0) \\ 0; & (z = 0) \end{cases}$$
 is continuous and the C-R equa

tions are satised at the origin, yet f1(0) does not exists.

- 10.Find the analytic function $f(z) = u(r, \theta) + i v(r, \theta)$ such that $u(r; \theta) = r^2 \cos 2\theta r \cos \theta + 2$.ii.S.T. The function $u = 1/2 \log (x^2 + y^2)$ is harmonic & find its conjugate.(May 11)
- 11. i.S.T. the real & imaginary parts of the function $w = \log z$ satisfy the C-R equations when z is not zero.ii.S.T. $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.(May 11)

12. S.T. both the real & imaginary parts of an analytic function are harmonic. (May 11)
$$1 = i + z$$

13. i. S.T.
$$\tan^{-1} z = \frac{1}{2} \log \frac{i+z}{i-z}$$

ii. Find the roots of $\sin z = \cosh 4$ (Nov 10)

14. i. Prove that
$$\tan -\frac{1}{z} = \left\lfloor \log \frac{(i+z)}{(i-z)} \right\rfloor$$
 (Nov 10)

ii. Find the analytic function whose real part is $r^{-4} \cos 4$

15. Find the analytic function whose real part is
$$\frac{y}{x^2 + y^2}$$
 (Nov 10)

- 16. i.S.T. the real & imaginary parts of the function $w = \log z$ satisfy the C R equations when z is not zero.ii.S.T. $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.(Nov 10)
- 17. i. Find the analytic function whose real part $\mu = e^{2x} [x \cos 2y y \sin 2y]$ ii. Find whether $f(z) = \sin x \sin y - i \cos x \cos y$ is analytic or not
- 18. i. Find the modulus and argument of $i^{\log(1+i)}$
 - ii. Show that an analytic function of constant module is constant. (May 11)
- 19. i. Prove that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though the C R equations are satisfied thereat.
 - ii. Find the analytic function whose real part is $y / (x^2 + y^2)$. (Nov 09, 08)
- 20. i. Derive Cauchy Riemann equations in polar coordinates. (Nov 09,Feb 08, May 05, Jan 03)
 ii. Prove that the function f(z) = conjugate of z is not analytic at any point.

Great effort is required to arrest decay and restore vigor. One must exercise proper deliberation, plan carefully before making a move, and be alert in guarding against relapse following a renaissance. - I Ching

- Show that $w = z^n$ (n, a positive integer) is analytic and find its derivative. 21. i. (Nov09, May 05) Prove that $\mu = e^{x^2 - y^2}$ is a harmonic function and find its harmonic conjugate. ii. Find whether $f(z) = \frac{x - yi}{x^2 + y^2}$ is analytic or not. 22. (Nov09, May 02) Find the general and principal values of (i) $\log_a(1+\sqrt{3} i)$ (ii) $\log_a(-1)$ 23. (Nov 09,Feb 08, Nov 04) 24. Separate the real and imaginary parts of tan hz. (Nov 09, May 06) 25. Separate the real and imaginary parts of sin hz. (Nov 09, May 06) 26. i. Find the real and imaginary parts of Cot z. Prove that $\rho^{\overline{z}}$ is analytic ii. Find e^z and $|e^z|$ if $z = 4\pi (2+i)$ iii. (Nov 09) 27. Solve tan h+2=0(Nov 09) 28. If tan(x+iy)=A+iB show that A^2+B^2-2B cot $h^2Y+1=0$ (Nov 11) Show that the function defined by $f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}$ at $z \neq 0$ and f(0)=0 is continuous and 29. i. satisfies CR equations at the origin but $f^{1}(0)$ does not exist (Nov 08, 06, Feb 07, May 01) ii. Find the analytic function whose real part is $y + e^x \cos y$. Show that $f(z) = \frac{xy^2(x+iy)}{x^2+y^2}$, $(x, y) \neq (0,0)$ and 0 at (x,y)=(0,0) is not analytic at z = 0 although 30. i. (Nov 08, Feb 07) CR equations are satisfied at the origin If $w = \phi + i\psi$ represents the complex potential for an electric field and $\psi = 3x^3y - y^3$ find ϕ . ii. The necessary and sufficient conditions for the function f(z) = u(x, y) + i v(x, y) to be analytic in the region 31. (Nov 08) i. $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ are continuous functions of x and y in R. ii. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial u} = -\frac{\partial v}{\partial x}$ 32. i. Prove that a. $i^i = e^{-(4n+1)\pi/2}$ b. $\log i^i = -(2n + \frac{1}{2})\pi$
 - ii. If tan(x + iy) = A + iB, Show that $A^2 + B^2 + 2A \cot 2x = 1$.

I am opposed to millionaires, but it would be dangerous to offer me the position.

- Mark Twain

(Nov 08)

Aurora's Engineering College

33. i. Separate into real and imaginary parts of
$$cosh (x + iy)$$
. (Nov 08)
ii. Find all the roots of the equation
a. sin z = cosh 4
b. sin z = i.
34. i. Find the real part of the principal value of $i^{log(1+i)}$ (Nov 08)
ii. Separate into real and imaginary parts of sec $(x + iy)$.
35. i. Separate into real and imaginary parts of coth z.
ii. If tan log $(x + iy) = a + ib$ where $a^2 + b^2 \frac{4}{4} l$ prove that tan log $(x^2 + y^2) = \frac{2a}{1 - a^2 - b^2}$ (Nov 08, May 05)
36. If $sin (\alpha + i\beta) = x + iy$ then prove that $\frac{x^2}{cosh^2\beta} + \frac{y^2}{sinh^2\beta} = 1$ and $\frac{x^2}{sin^2\alpha} - \frac{y^2}{cos^2\alpha} = 1$. (Feb 08)
37. Determine the analytic function $f(z) = u+iv$ given that $3u + 2v = y^2 - x^2 + 16x$. (Feb 08)
38. Test for analyticity at the origin for $f(z) = \frac{x^3 y(y - ix)}{x^6 + y^2}$ for $z \neq 0$. (Feb 08, May 06)
 $= 0$
for $z = 0$.
39. Find all values of z which satisfy (i) $e^z = 1 + i$ (ii) $sinz = 2$. (Feb 08, May 06, Nov 03)
40. If $w = f(z)$ is an analytic function, then prove that the family of curves defined by $u(x,y) = constant$ cuts
orthogonally the family of curves $v(x,y) = constant$. (Feb 08, May 05)
41. Show that $f(x,y) = x^3y - xy^3 + xy + x + y$ can be the imaginary part of an analytic function of $z = x + iy$.
(Feb 08, May 05)

42. Prove that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |\operatorname{Real} f(z)|^2 = 2 |f'(z)|^2$$
 where $w = f(z)$ is analytic. (Feb 08, May 05)

43. Find
$$f(z) = u + iv$$
 given that $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$ (Feb 08, Jan 03)

44. Derive Cauchy Riemann equations in cartesian co-ordinates. (Feb 07, Nov 06, May, Jan 03) 45. If $(x+iy)^{\frac{1}{3}} = a+ib$ then prove that $4(a^2-b^2) = \frac{x}{a} + \frac{y}{b}$ (Feb 07)

46 a) Evaluate
$$\int_{0}^{1+i} (x^2 - iy) dz$$
 along i)The straight line $y = x$ ii) Along $y = x^2$
b) Evaluate $\int_{c} \frac{(z+4) dz}{(z^2+2z+5)}$ where C is $|z+1-i|=2$ (May 13)

"When students are frustrated or get involved in put-down behavior, Random Acts of Kindness works beautifully." - Author:Kathy, Teacher, CA

47.a) Evaluate
$$\int_{(1,1)}^{(2,8)} (x^2 + ixy) dz$$
 along x = t and y = x³.

b) Using Cauchy's integral formula, evaluate
$$\int_{c} \frac{zdz}{(z-1)(z+3)}$$
 where C: $|z| = 1.5$. (Dec12)

48. a) Evaluate
$$\oint_c \frac{z-1}{(z+1)^2(z-2)} dz$$
 where C:|z-i|=2

b) Evaluate
$$\int_{c} \frac{z^4}{(z+1)(z-1)^2} dz$$
 Where 'C' is the ellipse $9x^2 + 4y^2 = 36$. (Dec12)

49. i. Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2}{(1-x^2)(x^2+4)} dx$$

ii. Evaluate by Residue theorem
$$\int_{c} \frac{\sin z}{z^6} dz$$
 where C: $|z| = 2$ (Dec11)

50. i. Evaluate
$$\int_{(0,0)}^{(1,1)} ((x - y^2)dx + 2xydy)_{along x_0} curve y = x$$

ii. Evaluate
$$\int_{z=0}^{z=1+i} \{x^2 + 2xy + i(y^2 - x)\}_{dz \text{ along } y = x^2}$$
 (Dec 11)

51. i. Evaluate
$$\int_{c} \frac{z^{3} + z^{2} + 2z - 1}{(z - 1)^{3}} dz$$
 where C: $|z| = 3$

ii. Evaluate
$$\int_{c} \frac{z^4}{(z+1)(z-i)^2} dz$$
 where 'C' is the ellipse $9x^2 + 4y^2 = 36$ (Dec 11)

52. Evaluate
$$\int_{c} \frac{z-3}{z^2+2z+5}$$
 where C is

Be careful about reading health books. You may die of a misprint.

- Mark Twain

II B.Tech.-ECE-I Sem-(2012-'13)-M-III

Aurora's Engineering College

i. |z| = 1

ii. |z+1-i| = 2

iii. |z+1+i|=2

ii. Evaluate
$$\int_{c} \frac{5z^2 - 3z + 2}{(z - 1)^3} dz$$
 where c is any simple closed curve enclosing z = 1. (Dec11)

53. i. Evaluate
$$\int_{c} \frac{3z^2 + 7z + 1}{z + 1} dz$$
 where C: $|z + i| = 1$

ii. Evaluate
$$\int_{c} \frac{z^2 - z + 17z + 1}{z - 1} dz$$
 where C: $|z| = \frac{1}{2}$ taken in antiiclockwise sense (Dec 11)

- 54. i. Evaluate $\delta_c (z^2 + 3z + 2)dz$ where C is the arc of the cycloid x=a(q + sin), y=a(1-cosq) between the points (0,0) & (ap, 2a)
 - ii. Evaluate $\dot{o}_{c}(z^{2}+3z)dz$ along the straight line from (2,0) to (2,2) and then from (2,2) to (0,2). (May 11)
- 55. The only singularities of a single valued function f(z) are poles of order 1 and 2 at z = -1 and z = 2 with residues at these poles i and 2 respectively. If f(0) = 7/4, f(1) = 5/4, determine the function f(z).(May 11)
- 56. Let `C' denotes the boundary of the square whose sides lie along the lenes $x = \pm 2$, $y = \pm 2$ where `C' is described in the positive sense evaluate the following integrals (May 11)

i.
$$\int_{C} \frac{\tan(z/2)}{(z-x_0)^2} dx \left(|x_0| < 2 \right)$$

::
$$\int \frac{\cosh z}{4} dz$$

ii.
$$\int_C \frac{z^4}{z^4} dz^4$$

57. From the integral $\int_{0}^{\frac{dz}{z+4}} S T \int_{0}^{\pi} \frac{1+4\cos\theta}{17+8\cos\theta} = 0$ where C: |z| = 1.

ii. If C is a closed curve described in + ve sense and $f(z_0) = \int_c^{z^4 + z} (z^{-4} z_0)^4 dz$ show that $f(z_0) = 8piz_0$ is where z_0 is a point inside `C' and $f(z_0) = 0$ if z_0 lies outside `C'. (May 11)

58. i. Evaluate
$$\int_{1-i}^{z+i} (2x+iy+1) dz$$
 along the straight line joining (1,-i) & (2,i)

ii. If C is the boundary of the square with vertices at the points z = 0, z = 1, z=1+i and z = i show that

$$\int_{c} (3z+1)dz = 0) \tag{Nov 10}$$

59. i. Evaluate
$$\int_{c}^{c} (x+y)dx + \chi^{2}y$$
 dy along y=3x between (0,0) and (3,a)
ii. Evaluate $\int_{c}^{c} e^{z}dz$ where C: $|z| = 1$ (Nov 10)

Clothes make the man. Naked people have little or no influence on society.

- Mark Twain

60. i. Evaluate
$$\int_{0}^{3+i} Z^2 dZ$$
 along the line x=2y

ii. Use Cauchy's integral formula to evalute $\oint \frac{e^z}{(z+2)(z+1)^2} dz$ where C is the circule |z| = 3.

61. i. a. Prove that
$$\int_C \frac{dz}{z-a} = 2fi$$
 where C is $|z-a| = r$ (Nov 09, 08, 06)
b. Evaluate $\oint_C (z-a)^n dz$; for $n = -1, n \neq -1$. n is integer.

ii. State and prove Cauchy's integral theorem.

62. Evaluate
$$\int_{(0,0)}^{(1,1)} (3x^2 + 4xy + ix^2) dz \text{ along } y = x^2.$$
 (Nov 09, 06, 04, Feb 08)

63. i. Evaluate
$$\int_{0}^{1+t} (x^2 + iy) dz \text{ along the path } y = x \text{ and } y = x^2.$$
 (Nov 09, 08)

ii. Evaluate, using Cauchy's integral formula $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz$, where c is the circle |z| = 3.

64. Evaluate
$$\oint_{c} \frac{dz}{(z-a)^n}$$
 if z = a is point inside a simple closed curve C and n is integer. (Nov 09, 06, May 00)

65. Evaluate using Cauchy's theorem
$$\int_{c} \frac{z^3 e^{-z} dz}{(z-1)^3}$$
 where c is $|z-1| = 1/2$ using Cauchy's integral formula.

66. i. Evaluate
$$\int_{0}^{3+i} z^2 dz$$
, along
a. the line $y = x/3$
b. the parabola $x = 3y^2$
ii. Evaluate $\int_{c} \frac{z^3 - 2z + 1}{(z - i)^2}$ where C is $|z| \approx 2$ by using Cauchy's Integral Formula. (Nov 08, Jan 03)
 $1+i$

67. i Evaluate
$$\int_{0}^{0} (x^2 - iy)$$
 along $y = x^2$ and $y = x$ (Nov 10)

ii. Use Cauchy's integral formula to evaluate $\oint_c \frac{\sin^2 z}{\left(z - \frac{\pi}{6}\right)^3} dz$ where c is the circle |z| = 1.

68. i. Evaluate
$$\int_C \frac{(z-\frac{\pi}{2})^3}{(z-\frac{\pi}{2})^3}$$
 with C: $|z| = 2$ using Cauchy's integral formula.

Ethical axioms are found and tested not very differently from the axioms of science. Truth is what stands the test of experience. - Albert Einstein .

.

ii. Evaluate
$$\int_{C} \frac{dz}{e^{z}(z-1)^{3}}$$
 where C: $|z| = 2$ Using Caucy's integral theorem. (Feb 08)

70. Evaluate
$$\int_{c} \frac{\log z \, dz}{(z-1)^3}$$
 where $c: |z-1| = \binom{1}{2}$, using Cauchy's Integral Formula. (Nov10)

71. Evaluate using Cauchy's integral formula
$$\int_{c} \frac{(z+1)dz}{z^2+2z+4}$$
 where $c : |z+1+i| = 2.$ (Nov 07, 06, May 06)

72. Evaluate using Cauchy's integral formula
$$\int_{c}^{-z} dz$$
 from $z = 0$ to $4 + 2i$ along the curve C given by

1.
$$z = t^2 + it$$
ii.Along the line $z = 0$ to $z = 2$: and then from $z = 2$ to $z = 4 + 2i$.(Nov 07, May 06)

73. i. Find f(z) and f(3) if f(a) =
$$\int_{C} \frac{(2z^2 - z - 2)dz}{(z - a)}$$
 where C is the circle $|z| = 2.5$ using Cauchy's integral formula.

ii. Evaluate
$$\int_{C} \log z dz$$
 where C is the circle $|z| = 1$ using Cauchy's integral formula. (Nov 07)

74. i. Evaluate
$$\int_{-2+i}^{2+i} z^3 dz$$
 using Cauchy's integral formula along y = x.

ii.
$$\int (x+y)dx + ix^2$$
 along y=x² from (0,0) to (3,9).
2+i

iii. Evaluate
$$\int_{-1+i} (x^2 - y^2 + i xy) dz$$
 using Cauchy's integral formula along y=x². (Nov 07)

75. i. Evaluate using Cauchy's integral formula
$$\int_{c} \frac{(z+1)dz}{z^2+2z+4}$$
 where C : $|z+1+i|=2$.

ii. Evaluate
$$\int_{c} \overline{z} dz$$
 from $z = 0$ to $4 + 2i$ along the curve C given by
a. $z = t^{2} + it$
b. Along the line $z = 0$ to $z = 2$: and then from $z = 2$ to $z = 4 + 2i$. (Nov 07)

76. If
$$F(a) = \int_{C} \frac{3z^2 + 7z + 1}{z - a} dz$$
 where C is $|z| = 2$ find $F(1)$, $F(3)$, $F^{11}(1 - i)$ using Cauchy's Integral formula

77. Evaluate
$$\int_{C} \frac{z^3 - \sin z}{(z - \frac{f}{2})^3} dz$$
 with C: $|z| = 2$ using Cauchy's integral formula (Feb 07)

In the beginning the Universe was created. This has made a lot of people very angry and been widely regarded as a bad move. - Douglas Adams

.

78. Evaluate
$$\int_{C} \frac{dz}{e^{z}(z-1)^{3}}$$
 where C:|z|=2using Cauchy's integral formula (Feb 07)

79. Evaluate
$$\int_C \frac{dz}{z^2 e^z}$$
 where C: $|z| = 1$ (Feb 07)

80. Evaluate using Cauchy's integral formula
$$\int_{0}^{1+i} z^2 dz \text{ along } y = x^2$$
 (May 11, Feb 07)

81. Evaluate
$$\int_{C} \frac{\log z}{(z-1)^3} dz$$
 where C: $|z-1| = \frac{1}{2}$ (Feb 07)

UNIT-IV

- a) Find the Taylor's series expansion of e^z about z = 3. **1.** b) Expand $f(z) = \frac{z^2 - 4}{z^2 + 5z + 4}$ in the region 1 < |z| < 4. (Dec 13)
- a) Evaluate $\int_{C} \frac{4-3z}{z(z-1)(z-2)} dz$, where 'C' is the circle $|z| = \frac{3}{2}$ using Residue theorem. 2. $\frac{z}{z} dx$ (Dec 13)

b) Evaluate by contour Integration
$$\int_{0}^{\infty} \frac{dx}{1+x^2}$$
. [15]

3 a) Expand
$$\frac{z}{(z+1)(z+2)}$$
 About Z = 2.
b) Expand $\frac{4z+3}{(z-3)(z+2)}$ in the annular region between $|z|=2$ and $|z|=3$ (May 13)

4. a) Find a Taylor Series expansion of a function $f(z) = \frac{1}{(z-1)(z-3)}$ about the point z=4. Obtain the region of convergence. (Dec12)

b) Determine the poles and residue at each pole of the function
$$f(z) = \frac{z^2}{(z-1)^2(z-2)}$$
.

4. a) Find the Tailor's expansion for the function
$$f(z) = \frac{1}{(1+z)^2}$$
 with centre at $-i$.

b) Find the Laurent's series of
$$\frac{1}{z^2 - 4z + 3}$$
 for $1 < z < 3$. (Dec12)

5. State and prove Taylor's Theorem of complex function f (z). (Dec11)

In those days spirits were brave, the stakes were high, men were real men, women were real women and small furry creatures from Alpha Centauri. - Douglas Adams

6. i. Represent the function
$$f(z) = \frac{1}{z(z+2)^3(z+1)^2}$$
 in Laurent series with in $\frac{5}{4} \le |z| \le \frac{7}{4}$

ii. Dene for a complex function (z)
i. Isolated Singularity
ii. Removable Singularity
iii. Essential singularity

(Dec11)

9.

Expand $\frac{7z-2}{(z+1)z(z-2)}$ about the point z = -1 in the region 1 < |z+1| < 3 as Laurent'sseries.

8. i. For the function
$$f(z) = \frac{2z^3 + 1}{z^2 + z}$$
 find

(a) Find the Taylsor's series expansion of about z = 3.

(b) Explain
$$f(z) = \cos z$$
 in Taylor's series about $z = \frac{f}{2}$ (Dec11)

Expand
$$f(z) = \frac{z+3}{z(z^2-z-2)}$$
 in powers of z.

- i. With in the unit circle about the origin
- ii. With in the annular region between the concentric circles about the origin having radii 1 and 2 respectively.
- iii. The exterior to the circle of radius 2.

10. Expand the function
$$f(z) = \frac{4z+4}{z(z-3)(z+2)}$$
 in powers of z, when (May 11)

- i. $|z| \le 1$
- ii. $1 \le |z| \le 2$
- iii. |z| > 2

11. Expand
$$f(z) = \frac{z+3}{z(z^2-z-2)}$$
 in powers of z.

i. With the in the unit circle about the origin

(Nov 10)

(May 11)

ii. With in the annular region between the concentric circle about the origin having radii 1 and 2 respectivelyiii. The exterior to the circle of radius 2

12. For the function
$$\int (z) = \frac{2z^2}{z^2 + z}$$
 find

- i. A tailors expansion valid in the neighborhood of the point 'i'.
- ii. A Laurent's series valid within the annulus of which centre is origin

13. i. Represent the function
$$f(z) = \frac{1}{z(z+2)^3(z+1)^2}$$
 in Laurent series in $\frac{5}{4} \le |z| \le \frac{7}{4}$

ii. Define for a complex function (z)

Never hold discussions with the monkey when the organ grinder is in the room.

- Sir Winston Churchill

(Nov 10)

a.Isolated Singularity b. Removable Singularity c. Essential Singularity

14. Obtain the Laurent's series expansion of
$$f(z) = \frac{e^z}{z(1-3z)}$$
 About $z = 1$ (Nov 09)

15. i. Expand
$$f(z) = \frac{1+2z}{z^2+z^3}$$
 in a series of positive and negative powers of z. (Nov 09, 08)
ii. Expand e^z as Taylor's series about $z = 1$.

16. i Find Laurent's series for
$$f(z) = \frac{1}{z^2(1-z)}$$
 and find the region of convergence. (Nov 09, 08, May 06)

ii. Expand
$$\frac{1}{z^2 - 3z + 2}$$
 in the region (i) $0 < |z - 1| < 1$ and (ii) $1 < |z| < 2$ (Nov 09, 08, Feb 07)

17. i. State and derive Laurent's series for an analytic function f(z). (Nov 09,Feb 08, Nov 07, May 06) ii. Obtain Taylor's in the expansion of $\frac{e^z}{z(z+1)}$ about z=2

18. Expand
$$f(z) = \frac{1}{z^2 - z - 6}$$
 about (i) $z = -1$ (ii) $z = 1$ (Nov 09, 06)

19. Obtain Taylor series to represent the function $\frac{z^2 - 1}{(z+2)(z+3)}$ in the region |z| < 2. (May 11,06, Nov 09)

20. i. Expand $\log (1 - z)$ when |z| < 1 (Nov 08) ii. Determine the poles of the function a. $\frac{z}{\cos z}$ b. $\cot z$.

21. i. Expand
$$f(z) = z - 1/z + 1$$
 in Taylor's series about the point $z = 0$ and $z = 1$. (Nov 08)
ii. Determine the poles of the function $\frac{1 - e^{2z}}{z^4}$

22. Expand the Laurent series of
$$\frac{z^2 - 1}{(z+2)(z+3)}$$
 for $1 < |z| < 3$. (Feb 08)

23. Evaluate
$$f(z) = \frac{z}{z^2 + 1}$$
 where C is $|z| = 3/2$. (Feb 08)

Expand log z by Taylor series about
$$z = 1$$
 (Feb 08, 07, Nov 07)
25. Expand $\frac{1}{(z^2+1)(z^2+2)}$ in positive and negative powers of z if $1 < |z| < \sqrt{2}$ (Feb 08, 07, Nov 07)

You would win a man to your cause, first convince him that you are his sincere friend.

- Abraham Lincoln

Aurora's Engineering College

26. Obtain all the Laurent series of the function
$$\frac{7z-2}{(z+1)z(z-2)}$$
 about $z = -2$ (Feb 08, 07, Nov 07)

27. Find the Taylor series of
$$\frac{z}{z+2}$$
 about $z = 1$, also find the region of convergence. (Feb 08, Apr 05)

28. Find the Laurent expansion of
$$\frac{1}{z^2 - 4z + 3}$$
, for $1 < |z| < 3$. (Nov 07, May 06)

29. Expand
$$f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$$
 in the region (a) $1 < |z| < 4$ (b) $|z| < 1$ (Feb, Nov 07)

31. Find the poles and the residues at each pole of
$$f(z) = \frac{z}{z^2 + 1}$$
. (Nov 07)

32. Find the Laurent series expansion of the function (Nov 07, 06, 03)
i.
$$\frac{z^2 - 1}{z^2 + 5z + 6}$$
 about $z = 0$ in the region $2 < |z| < 3$.
ii. $\frac{z^2 - 6z - 1}{(z - 1)(z - 3)(z + 2)}$ in the region $3 < |z + 2| < 5$. (May 11)

34. Show that when
$$|z+1| < 1, z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1)(z+1)^n$$
. ((May 11, Nov 06, 04, 03)

35 a) Evaluate
$$\int_{0}^{2f} \frac{d_{\#}}{5 - 3\cos_{\#}}$$
 by contour integration in complex plane. (May 13)

36. a) Evaluate
$$\int_{0}^{J} \frac{1}{3 + 2\cos \pi} d_{\pi}$$
 by Contour integration in the complex plane.

b) Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$$
 by method of complex variables. (Dec12)

37. a) Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$$
 using residue theorem.

r

b) Evaluate by Residue theorem
$$\int_{C} \frac{z-1}{(z+1)^2(z-2)} dz$$
 where C: |z-I|=2. (Dec12)

38. Find the bilinear transformation which maps z1 = 1, 2i; $z_2 = 2 + i$; $z_3 = 2 + 3iin$ to the points $w_1 = 2 + 2i$; $w_2 = 1 + 3i$; $w_3 = 4$ respectively. Find the fixed and critical points. (Dec11)

As been my experience that folks who have no vices have very few virtues.

- Abraham Lincoln

39. i. Evaluate
$$\int_{0}^{\infty} \frac{1}{1+x^6} dx$$

ii. Evaluate by Residue theorem
$$\int_{c} \frac{4z^2 - 4z + 1}{(z - 2)(z^2 + 4)} dz$$
C: $|z| = 1$. (Dec11)

40. i. By the method of contour integration prove that
$$\int_{0}^{\infty} \frac{\cos mx}{a^{2} + x^{2}} dx = \frac{f}{2}e^{-ma}$$

ii. Evaluate by Residue theorem
$$\int_{c} \frac{z^2}{(z-1)^2(z-2)} dx \text{ were } |z|=3.$$
 (Dec11)

41. i. Evaluate
$$\int_{0}^{\infty} \frac{\sin x}{x^2 + 4x + 5} dx$$

ii. Evaluate by Residue theorem
$$\int_{c} \frac{z-1}{(z+1)^2(z-2)} dz$$
 where C:|z-i| = 2 (Dec11)

42. i. Evaluate
$$\int_{0}^{\infty} \frac{\log x}{1+x^2} dx$$

ii. Find the Residues of
$$f(z) = \frac{1}{z(e^z - 1)}$$
. (May 11)

43. i. Using complex variable techniques evaluate
$$\int_{0}^{2\pi} \frac{\sin^2\theta \, d\theta}{5 - 4\cos\theta}$$

ii. The only singularities of a single valued function f(z) are poles of order 2 and 1 at z = 1 & z = 2 with residues of these poles as 1 and 3 respectively. If f(0) = 3/2, f(-1) = 1, determine the function. (May 11).

Find the residue of
$$\frac{1}{(z-Sinz)}$$
 at $z=0$

ii. Evaluate
$$\int \frac{(z-3)dz}{\left(z^2+2z+5\right)}$$
 Where C is $|z+1-i|=2$ (Nov 10)

44. i. Find the image of the triangle with vertices at i, 1+i, 1-i in the z - plane, under the transformation

$$e^{\frac{5fi}{3}\cdot(z-2+4i)}$$

i.

It is not a pleasant condition, but certainty is absurd.

- Voltaire

II B.Tech.-ECE-I Sem-(2012-'13)-M-III

Aurora's Engineering College

(Nov 09,08)

ii. Find the image of the infinite strip,
$$0 < y < \frac{1}{2}$$
 under the mapping function $w = \frac{1}{z}$ (Nov 10)

45. i. Evaluate
$$\int_{c} \frac{z^{4} + z^{2} + 2z - 1}{(z - 1)^{3}} dz \text{ where C: } |z| = 3$$

ii. Evaluate
$$\int_{c} \frac{z^{4}}{(z+1)(z-i)^{2}} dz$$
 where 'C' is the Ellipse $9x^{2} + 4y^{2} = 36$ (Nov 10)

46. i. Using the method of contour integration prove that $\int_{-\infty}^{\infty} \frac{\chi^2}{(\chi^2 + 1)^2} dx$

- ii. Determine the poles and the residues at each pole of the function f(z) = Cot Z (Nov 10)
- 47. i Find the Residues of f (z) = $\frac{z^2}{z(z+2)^3} at z = -2$

ii. Find the Residues of
$$f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$$
 at $|z| = 1$ (Nov 10)

- 48. i. Define conformal Transformation. Show that a bilinear transformation is conformal.
 ii. Show that circles are invariant under linear transformation w = az + c. (Nov 10)
- 49. i. State and prove Cauchy's Residue theorem.
 - ii. Calculate the residue at z = 0 of $f(z) = \frac{1 + e^z}{z \cos z + \sin z}$,
- 50. i. Determine the poles of the function f(z) = z2/(z+1)2(z+2) and the residues at each pole. (Nov 09,08) ii. Evaluate $\oint_c \frac{dx}{(z^2+4)^2}$ where c = |z - i| = 2
- 51. Find the poles of the function $f(z) = \frac{1}{(z+1)(z+3)}$ and residues at these poles.

52. Show by the method of residues,
$$\int_{0}^{\pi} \frac{d\theta}{a+b\cos\theta} = \frac{\pi}{\sqrt{a^2-b^2}} (a > b > 0).$$
 (Nov 09, 08)

53. Evaluate
$$\int_{0}^{2f} \frac{\sin^2 d_{\pi}}{a + b \cos \pi}$$
 (Nov 09, Feb 07, May 2000)

Doubt is not a pleasant condition, but certainty is an absurd one.

- Voltaire

II B.Tech.-ECE-I Sem-(2014-15)-M-III

Aurora's Engineering College

54. i. Find the residues of
$$f(z) = \frac{z^3}{(z-1)^4 (z-2)(z-3)}$$
 at $z = 1$

ii. Show that
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos\theta} = \frac{2\pi}{\sqrt{3}}$$
 (Nov 10)

55. Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{(5-3\sin\theta)^2}$$
 using residue theorem. (Nov 08)

56. Show by the method of contour integration that
$$\int_{0}^{\infty} \frac{Cosmx}{(a^{2} + x^{2})} dx = \frac{f}{4a^{3}}(1 + ma)e^{-ma} \quad (a > 0, b > 0).$$
 (Feb 08)

57. Evaluate by contour integration
$$\int_{0}^{\infty} \frac{dx}{(1+x^{2})}$$
. (Feb 08)

58. i. Evaluate by residue theorem
$$\int_{0}^{2f} \frac{d_{\#}}{(2 + \cos_{\#})}$$

ii. Use the method of contour integration to evaluate
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)^3}$$
. (Feb 08)

59. i. Show that
$$\int_{0}^{2f} \frac{d_{n}}{a+bSin_{n}} = \int_{0}^{2f} \frac{d_{n}}{a+bCos_{n}} = \frac{2f}{\sqrt{a^{2}-b^{2}}}$$
, $a > b > 0$ using residue theorem.

ii. Evaluate
$$\int_0^\infty \frac{dx}{(x^2 + a^2)^2}$$
 (Feb 08, 07, Nov, May 04)

60. Find the poles and residues at each pole of
$$f(z) = \frac{\sin^2 z}{(z - \frac{f}{6})^2}$$
 (Feb 08, Nov 06)

61. Find the poles and residues at each pole of
$$\frac{ze^z}{(z-1)^3}$$
 (Feb 08, Nov, May 06)

62. Determine the poles of the function
$$\frac{z+1}{z^2(z-2)}$$
 and the corresponding residues (Feb 08, May 06)

63. Evaluate
$$\oint_c \frac{dz}{Sinhz}$$
, where c is the circle $|z| = 4$ using residue theorem. (Feb 08, May 05)

64. Show that
$$\int_{0}^{f} \frac{Cos 2_{''}}{1 - 2aCos_{''} + a^{2}} = \frac{fa^{2}}{\sqrt{1 - a^{2}}}, (a^{2} < 1) \text{ using residue theorem.}$$
(Feb 08, May 05)

One can survive everything, nowadays, except death, and live down everything except a good reputation. - Oscar Wilde

.....

Aurora's Engineering College

65. Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$$
 (Feb 08, Nov 07, May 04, 01 Jan 03)

66. Determine the poles of the function
$$\frac{(2z+1)^2}{(4z^3+z)}$$
 and the corresponding residues (Nov 07, May 05)

67. Evaluate
$$\int_{C} \frac{(\sin f z^2 + \cos z^2) dz}{(z-1)^2 (z-2)}$$
 where c is the circle $|z| = 3$ using residue theorem. (Nov 07, May 05)

68. Evaluate
$$\int_{0}^{2f} \frac{d_{n}}{(a+b\cos_{n})^{2}}, a > b > 0, using residue theorem.$$
 (Nov 07, May 05)

69. Using the complex variable technique evaluate
$$\int_{-\infty}^{\infty} \frac{dx}{x^4 + 1}$$
 (Nov 07, May 2000)

70. Evaluate
$$\int_{C} \frac{ze^2 dz}{(z^2 + 9)}$$
 where c is $|z| = 5$ by residue theorem. (Nov 07)

71. Evaluate
$$\int_{0}^{2f} \frac{\cos 2_{\pi}}{5 + 4\cos \pi} d_{\pi}$$
 using residue theorem. (Nov 07)

72. Evaluate
$$\int_{0}^{\infty} \frac{dx}{(x^2+1)^3}$$
 using residue theorem. (Nov 07)

73. Evaluate
$$\int_{C} \frac{ze^{z}dz}{(z^{2}+9)}$$
 where C is $|z| = 5$ by residue theorem. (Nov 07)

74. Evaluate
$$\int_{0}^{r} \frac{dx}{(x^2+1)^3}$$
 (Nov 07, May 05)

75. Show that
$$\int_{0}^{f} \frac{ad_{n}}{a^{2} + \sin^{2}_{n}} = \frac{f}{\sqrt{1 + a^{2}}}, (a>0) \text{ using residue theorem.}$$
(Nov 07, 04)

76. Determine the poles and the corresponding residues of
$$f(z) = \frac{z+1}{z^2(z-2)}$$
 (Feb 07)

77. Evaluate
$$\oint_C \frac{dz}{\sinh z}$$
, C: $|z| = 4$ using residue theorem (Feb 07)

One should always play fairly when one has the winning cards.

- Oscar Wilde

II B.Tech.-ECE-I Sem-(2014-15)-M-III

Aurora's Engineering College

78. Evaluate by Countour integration
$$\int_{0}^{\infty} \frac{dx}{1+x^2}$$
 (Feb 07)

79. Find the poles and the residues at each pole of
$$f(z) = \frac{1 - e^z}{z^4}$$
 (Feb 07)

80. Evaluate
$$\int_{C} \frac{z-3}{z^2+2z+5} dz$$
 where C is the circle (i) $|z|=1$ (ii) $|z+1-i|=2$ using residue theorem (Feb 07)

81. Evaluate by residue theorem
$$\int_{0}^{\infty} \frac{dx}{x^{6} + 1}$$
 using residue theorem (Feb 07)

82. Evaluate
$$\int_{0}^{2f} \frac{d_{"}}{(5-3\cos_{"})^2}$$
 using residue theorem (Feb 07)

83. Evaluate
$$\int_{0}^{\infty} \frac{\sin mx}{x} dx$$
 by residue theorem (Feb 07)

UNIT-V

2 a) Show that the transformation $W = z^2$ maps the circle |z-1| = 1 into the cardiod ... = $2(1 + \cos w)$ where $W = ...e^{iW}$

b) Find the bilinear mapping which maps the points
$$z=-1,-i,-1$$
 to $i,0,-i$ (May13)

3. a) Find the image of the strip $\frac{-f}{2} < x < \frac{f}{2}$; 1 < y < 2 under the mapping w(z) = sin(z). Draw the rough sketch of the regions in Z-plan e and W-plane.

b) Find the bilinear transformation that maps the points $z_1 = -I$, $z_2 = 0$, $z_3 = I$ in to the points $w_1 = -1$, $w_2 = I$, $w_3 = 1I$ respectively. (Dec 12)

4. a) find the image of the circle |z-2i|=2 in the complex plane under the mapping $w=\frac{1}{2}$.

b) Show that the transformation w= $\frac{i(1-z)}{1+z}$ transforms the circle |z|=1 in to the real axis in the w-plane and the interior of the circle into upper half of the w-plane. (Dec 12)

Search others for their virtues, thyself for thy vices.

- Benjamin Franklin

- 5. Find the bilinear transformation which maps $z_1 = 1 2i$, $z_2 = 2 + i$, $z_3 = 2 + 3i$ in to the points $w_1 = 2 + 2i$, $w_2 = 1 + 3i$, $w_3 = 4$ repectively. Find the fixed and critical points. (Dec 11)
- 6. i. Show that the transformation $w = \cos z$ maps the half of the z-plane to theright of the imaginary axis into the entire w-plane.
 - ii. Show that the transformation maps the family of line parallel to y-axis toellipse. (Dec11)
- 7. i. Find the points at which w = cosh z is not conformal.
 ii. Find the image of the strip bounded by x = 0 and x = π/4 under the transfor- mation w = cos z. (May 11)
- 8. Find the bilinear transformation which maps $z_1 = 1$; $z_2 = i$; $z_3 = -1$ in to the points $w_1=i$; $w_2 = 0$; $w_3 = -i$ respectively. Find the fixed and critical points of this transformation and find the image of |z| < 1. (May 11)
- 9. i. Find the image of the triangle with vertices at i,1+i,1-i in the z-plane, under the transformation e⁵¹¹ⁱ/₃ (z-2+4i).
 ii. Find the image of the infinite strip, 0 < y < 1/2 under the mapping function w = 1/z. (May 11)
- 10. i. Show that the transformation $w = \frac{3-z}{z-2}$ transforms the circle $\left|z \frac{5}{2}\right| = \frac{1}{2}$ in the z-plane in to the imaginary axis in the w-plane.

ii. For the mapping w = 1/z, find the image of the family of circles $x^2 + y^2 = ax$, where a is real. (May 11)

11. i. Find the map of the circle |z| = C under the transformation w = z - 2 + 4i

ii. Show that both the transformations
$$w = \frac{z-i}{z+i}$$
 and $w = \frac{i-z}{i+z}$ transforms $|w| \le 1$ into upper half planeI (z) >0.
(Nov 10)

- 12. i. Find the image of |z| = 2 under the transformation w = 3z.
 - ii. Show that the transformation $w = z^2$ maps the circle |z-1| = 1 cardiod $r = 2(1+Cox_{u})$ (Nov 10)
- 13. i. State that the transformation $W=e^{z}$ transform the region between the real axis and the line parallel to the real axis at $y=\pi$ into upper half of the W-plane.
 - ii. Find the bilinear transformation which maps Z=-1, i, 1 into the point W=-i, 0, i. (Nov 09)
- 14. Define conformal mapping ? State and prove the sufficient condition for W = f(z) to be conformal at the point z_0 . (Nov 09 07, Jan 03)
- 15. Find and plot the image of triangular region with vertices at (0,0), (1,0) (0,1) under the transformation w=(1-i)z+3. (Nov 09,06, May 05, Nov 04)
- 16. i. Find the image of the region in the z-plane between the lines y = 0 and $y = \frac{f}{2}$ under the transformation

$$w = e^2$$
.

(Nov 09, May 06)

ii. Find the bilinear transformation which maps the points (-1, 0, 1) into the points. (0, i, 3i)

- Sir Winston Churchill

- 17. Under the transformation $w = \frac{1}{z}$ find the image of the circle |z-2i| = 2. (Nov 09, May 06)
- 18. Show that the transformation w = z+1/z, converts that the radial lines θ = constant in the z-plane in to a family of confocal hyperbolar in the w-plane. (Nov 08)
- 19. i. Find and plot the image of the regions

a. x > 1

b. y > 0

- c. 0 < y < 1/2 under the transformation w = 1/z
- ii. Prove that every bilinear transformation maps the totality of circle and straight lines in the z plane on to the totality of circles and straight lines in the w-plane.
- 20. i. Show that horizantal lines in z plane are mapped to ellipser in w plane under the transformation w = sin z.
 ii. Define Bilineer transformation. Determine the Bilinear transformation which maps z = 0, -i, 2i into w = 5i, oo, -i/3.
- 21. Find the image of the infinite strip 0 < y < 1/2 under the transformation $w = \frac{1}{7}$.

(Nov 08, 07, Feb 08, 07, May 05)

22. Show that the image of the hyperbola $x^2 - y^2 = 1$ under the transformation $w = \frac{1}{z}$ is $r^2 = \cos 2_w$

(Nov10)

- 23. i. Show that the transformation w=i(1-z)/(i-z), maps the interior of the circle |z|=1 in to the upper half of the w-plane, the upper semi circle into positive half of real axis and lower semi circle into negative half of the real axis.
 - ii. By the transformation $w = z^2$ show that the circle |z-a| = c (a and c are real) in the z plane correspond to the limacons in the w-plane. (Feb 08)
- 24. Find the bilinear transformation which maps the points (-1, 0, 1) into the points (0, i, 3i).

(Feb 08, 07, Nov 07, May 05)

25. Find the image of the domain in the z-plane to the left of the line x = -3 under the transformation $w = z^2$ (Feb 08, Nov 06)

26. Find the bilinear transformation which maps the points z = 2, 1, 0 into w = 1, 0, 1 respectively. (Feb 08,Nov 06)

27. Show that the transformation
$$w = \frac{2z+3}{z-4}$$
 changes the circle $x^2 + y^2 - 4x = 0$ into the line 4u+3=0

(Feb, Nov 07)

28. Find the bilinear transformation which maps the pints $(0, 1, \infty)$ into the points (-1, -2, -i).

(Nov 07, 06, May 06, 2000)

- 29. Let f(z) be analytic function of z in a domain D of the z-plane and let $f'(z) \stackrel{4}{4} 0$ in D. Then show that w = f(z) is a conformal mapping at all points of D. (Nov 07, 03)
- 30. Find the bilinear transformation which maps the points (-i, o, i) into the point (-l, i, l) respectively. (Nov 07)

(Nov 08)

II B.Tech.-ECE-I Sem-(2012-'13)-M-III

30. Under the transformation
$$w = \frac{z - i}{1 - iz}$$
, find the image of the circle $|z| = 1$ in w-plane. (Feb 07)

31. Show that the mapping
$$w = z + \frac{1}{z}$$
 maps the circle $|z| = c$ into the ellipse $u = (c + \frac{1}{c}) \cos u$,

$$v = (c - \frac{1}{c})\sin \pi$$
. Also discuss the case when $c = 1$ in detail. (Feb 07)

Broadly speaking, the short words are the best, and the old words best of all. To profit from good advice requires more wisdom than to give it. - John Churton Collins