

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

(Established by an Act No.30 of 2008 of A.P. State Legislature) Kukatpally, Hyderabad – 500 085, Andhra Pradesh (India)

M. TECH. (ELECTRONICS AND COMMUNICATION ENGINEERING/ DIGITAL ELECTRONICS AND COMMUNICATION ENGINEERING/ DIGITAL ELECTRONICS AND COMMUNICATION SYSTEMS)

(R13)COURSE STRUCTURE AND SYLLABUS

I Year - I Semester

Code	Group	Subject	L	Р	Credits
		Digital System Design	3	0	3
		Advanced Digital Signal Processing	3	0	3
		VLSI Technology and Design	3	0	3
		Advanced Data Communications	3	0	3
	Elective –I	Detection and Estimation Theory Microcontrollers for Embedded System Design Radio Navigational Aids	3	0	3
	Elective -II	Internetworking Advanced Computer Architecture Embedded Real Time Operating Systems	3	0	3
	Lab	Signal Processing Lab	0	3	2
		Seminar	-	-	2
		Total Credits	18	3	22

I Year - II Semester

Code	Group	Subject	L	Р	Credits
		Image and Video Processing	3	0	3
		Coding Theory and Techniques	3	0	3
		Optical Communications Technology	3	0	3
		Wireless Communications and Networks	3	0	3
	Elective - III	Speech Processing Optical Networks Radar Signal Processing	3	0	3
	Elective – IV	Network Security And Cryptography Satellite Communications Digital Signal Processors and Architectures	3	0	3
	Lab	Advanced Communications Lab	0	3	2
		Seminar	-	-	2
		Total Credits	18	3	22

II Year - I Semester

Code	Group	Subject	L	Р	Credits
		Comprehensive Viva	-	-	2
		Project Seminar	0	3	2
		Project work	-	-	18
		Total Credits	-	3	22

II Year - II Semester

Code	Group	Subject	L	Р	Credits
		Project work and Seminar	-	-	22
		Total Credits	-	-	22

DIGITAL SYSTEM DESIGN

UNIT -I:

Minimization and Transformation of Sequential Machines: The Finite State Model – Capabilities and limitations of FSM, State equivalence and Machine minimization, Simplification of incompletely specified machines.

Fundamental mode model – Flow table – State reduction – Minimal closed covers – Races, Cycles and Hazards.

UNIT -II:

Digital Design: Digital Design Using ROMs, PALs and PLAs, BCD Adder, 32 – bit adder, State graphs for control circuits, Scoreboard and Controller, A shift and add multiplier, Array multiplier, Keypad Scanner, Binary divider.

UNIT -III:

SM Charts: State machine charts, Derivation of SM Charts, Realization of SM Chart, Implementation of Binary Multiplier, dice game controller.

UNIT -IV:

Fault Modeling & Test Pattern Generation: Logic Fault model – Fault detection & Redundancy-Fault equivalence and fault location –Fault dominance – Single stuck at fault model – Multiple stuck at fault models –Bridging fault model.

Fault diagnosis of combinational circuits by conventional methods – Path sensitization techniques, Boolean Difference method – Kohavi algorithm – Test algorithms – D algorithm, PODEM, Random testing, Transition count testing, Signature analysis and test bridging faults.

UNIT -V:

Fault Diagnosis in Sequential Circuits: Circuit Test Approach, Transition Check Approach – State identification and fault detection experiment, Machine identification, Design of fault detection experiment

TEXT BOOKS:

- 1. Fundamentals of Logic Design Charles H. Roth, 5th Ed., Cengage Learning.
- 2. Digital Systems Testing and Testable Design Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman- John Wiley & Sons Inc.
- 3. Logic Design Theory N. N. Biswas, PHI

- 1. Switching and Finite Automata Theory Z. Kohavi , 2nd Ed., 2001, TMH
- 2. Digital Design Morris Mano, M.D.Ciletti, 4th Edition, PHI.
- 3. Digital Circuits and Logic Design Samuel C. Lee, PHI

ADVANCED DIGITAL SIGNAL PROCESSING

UNIT -I:

Review of DFT, FFT, IIR Filters and FIR Filters: Multi Rate Signal Processing: Introduction, Decimation by a factor D, Interpolation by a factor I, Sampling rate conversion by a rational factor I/D, Multistage Implementation of Sampling Rate Conversion, Filter design & Implementation for sampling rate conversion.

UNIT -II:

Applications of Multi Rate Signal Processing: Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, Implementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Sub-band Coding of Speech Signals, Quadrature Mirror Filters, Trans-multiplexers, Over Sampling A/D and D/A Conversion.

UNIT -III:

Non-Parametric Methods of Power Spectral Estimation: Estimation of spectra from finite duration observation of signals, Non-parametric Methods: Bartlett, Welch & Blackman-Tukey methods, Comparison of all Non-Parametric methods

UNIT -IV:

Implementation of Digital Filters: Introduction to filter structures (IIR & FIR), Frequency sampling structures of FIR, Lattice structures, Forward prediction error, Backward prediction error, Reflection coefficients for lattice realization, Implementation of lattice structures for IIR filters, Advantages of lattice structures.

UNIT -V:

Parametric Methods of Power Spectrum Estimation: Autocorrelation & Its Properties, Relation between auto correlation & model parameters, AR Models - Yule-Walker & Burg Methods, MA & ARMA models for power spectrum estimation, Finite word length effect in IIR digital Filters — Finite word-length effects in FFT algorithms.

TEXT BOOKS:

- 1. Digital Signal Processing: Principles, Algorithms & Applications J.G.Proakis & D. G. Manolakis, 4th Ed., PHI.
- 2. Discrete Time Signal Processing Alan V Oppenheim & R. W Schaffer, PHI.
- 3. DSP A Practical Approach Emmanuel C. Ifeacher, Barrie. W. Jervis, 2 Ed., Pearson Education.

- 1. Modern Spectral Estimation: Theory & Application S. M. Kay, 1988, PHI.
- 2. Multi Rate Systems and Filter Banks P.P.Vaidyanathan Pearson Education.
- Digital Signal Processing S.Salivahanan, A.Vallavaraj, C.Gnanapriya, 2000,TMH
- 4. Digital Spectral Analysis Jr. Marple

VLSI TECHNOLOGY AND DESIGN

UNIT -I:

Review of Microelectronics and Introduction to MOS Technologies: MOS, CMOS, BiCMOS Technology.

Basic Electrical Properties of MOS, CMOS & BiCMOS Circuits: $I_{ds} - V_{ds}$ relationships, Threshold Voltage V_T , G_m , G_{ds} and ω_o , Pass Transistor, MOS, CMOS & Bi CMOS Inverters, Z_{pu}/Z_{pd} , MOS Transistor circuit model, Latch-up in CMOS circuits.

UNIT -II:

Layout Design and Tools: Transistor structures, Wires and Vias, Scalable Design rules, Layout Design tools.

Logic Gates & Layouts: Static Complementary Gates, Switch Logic, Alternative Gate circuits, Low power gates, Resistive and Inductive interconnect delays.

UNIT -III:

Combinational Logic Networks: Layouts, Simulation, Network delay, Interconnect design, Power optimization, Switch logic networks, Gate and Network testing.

UNIT -IV:

Sequential Systems: Memory cells and Arrays, Clocking disciplines, Design, Power optimization, Design validation and testing.

UNIT -V:

Floor planning methods, Global Interconnect, Floor Plan Design, Off-chip connections.

TEXT BOOKS:

- 1. Essentials of VLSI Circuits and Systems, K. Eshraghian Eshraghian. D, A. Pucknell, 2005, PHI.
- 2. Modern VLSI Design Wayne Wolf, 3rd Ed., 1997, Pearson Education.

- 1. Introduction to VLSI Systems: A Logic, Circuit and System Perspective Ming-BO Lin, CRC Press, 2011
- 2. Principals of CMOS VLSI Design N.H.E Weste, K. Eshraghian, 2nd Ed., Addison Wesley.

ADVANCED DATA COMMUNICATIONS

UNIT -I:

Digital Modulation Schemes: BPSK, QPSK, 8PSK, 16PSK, 8QAM, 16QAM, DPSK – Methods, Band Width Efficiency, Carrier Recovery, Clock Recovery.

UNIT -II:

Basic Concepts of Data Communications, Interfaces and Modems: Data Communication Networks, Protocols and Standards, UART, USB, I2C, I2S, Line Configuration, Topology, Transmission Modes, Digital Data Transmission, DTE-DCE interface, Categories of Networks – TCP/IP Protocol suite and Comparison with OSI model.

UNIT -III:

Error Correction: Types of Errors, Vertical Redundancy Check (VRC), LRC, CRC, Checksum, Error Correction using Hamming code

Data Link Control: Line Discipline, Flow Control, Error Control

Data Link Protocols: Asynchronous Protocols, Synchronous Protocols, Character Oriented Protocols, Bit-Oriented Protocol, Link Access Procedures.

UNIT -IV

Multiplexing: Frequency Division Multiplexing (FDM), Time Division Multiplexing (TDM), Multiplexing Application. DSL.

Local Area Networks: Ethernet, Other Ether Networks, Token Bus, Token Ring, FDDI.

Metropolitan Area Networks: IEEE 802.6, SMDS

Switching: Circuit Switching, Packet Switching, Message Switching.

Networking and Interfacing Devices: Repeaters, Bridges, Routers, Gateway, Other Devices.

UNIT -V:

Multiple Access Techniques: Random Access, Aloha- Carrier Sense Multiple Access (CSMA)-Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Controlled Access- Reservation-Polling- Token Passing, Channelization, Frequency- Division Multiple Access (FDMA), Time - Division Multiple Access (TDMA), Code - Division Multiple Access (CDMA), OFDM and OFDMA.

TEXT BOOKS:

- 1. Data Communication and Computer Networking B. A.Forouzan, 2nd Ed., 2003, TMH.
- 2. Advanced Electronic Communication Systems W. Tomasi, 5^{th E}d., 2008, PEI.

- 1. Data Communications and Computer Networks Prakash C. Gupta, 2006, PHI.
- 2. Data and Computer Communications William Stallings, 8th Ed., 2007, PHI.
- 3. Data Communication and Tele Processing Systems -T. Housely, 2nd Ed, 2008, BSP.
- 4. Data Communications and Computer Networks- Brijendra Singh, 2nd Ed., 2005, PHI.

DETECTION AND ESTIMATION THEORY (ELECTIVE - I)

UNIT -I:

Random Processes: Discrete Linear Models, Markov Sequences and Processes, Point Processes, and Gaussian Processes.

UNIT -II:

Detection Theory: Basic Detection Problem, Maximum A posteriori Decision Rule, Minimum Probability of Error Classifier, Bayes Decision Rule, Multiple-Class Problem (Bayes)- minimum probability error with and without equal a priori probabilities, Neyman-Pearson Classifier, General Calculation of Probability of Error, General Gaussian Problem, Composite Hypotheses.

UNIT -III:

Linear Minimum Mean-Square Error Filtering: Linear Minimum Mean Squared Error Estimators, Nonlinear Minimum Mean Squared Error Estimators. Innovations, Digital Wiener Filters with Stored Data, Real-time Digital Wiener Filters, Kalman Filters.

UNIT -IV:

Statistics: Measurements, Nonparametric Estimators of Probability Distribution and Density Functions, Point Estimators of Parameters, Measures of the Quality of Estimators, Introduction to Interval Estimates, Distribution of Estimators, Tests of Hypotheses, Simple Linear Regression, Multiple Linear Regression.

UNIT -V:

Estimating the Parameters of Random Processes from Data: Tests for Stationarity and Ergodicity, Model-free Estimation, Model-based Estimation of Autocorrelation Functions, Power Special Density Functions.

TEXT BOOKS:

- 1. Random Signals: Detection, Estimation and Data Analysis K. Sam Shanmugan & A.M. Breipohl, Wiley India Pvt. Ltd, 2011.
- 2. Random Processes: Filtering, Estimation and Detection Lonnie C. Ludeman, Wiley India Pvt. Ltd., 2010.

- 1. Fundamentals of Statistical Signal Processing: Volume I Estimation Theory—Steven.M.Kay, Prentice Hall, USA, 1998.
- 2. Fundamentals of Statistical Signal Processing: Volume I Detection Theory—Steven.M.Kay, Prentice Hall, USA, 1998.
- 3. Introduction to Statistical Signal Processing with Applications Srinath, Rajasekaran, Viswanathan, 2003, PHI.
- 4. Statistical Signal Processing: Detection, Estimation and Time Series Analysis Louis L.Scharf, 1991, Addison Wesley.
- 5. Detection, Estimation and Modulation Theory: Part I Harry L. Van Trees, 2001, John Wiley & Sons. USA.
- 6. Signal Processing: Discrete Spectral Analysis Detection & Estimation Mischa Schwartz, Leonard Shaw, 1975, Mc Graw Hill.

MICROCONTROLLERS FOR EMBEDDED SYSTEM DESIGN (ELECTIVE -I)

UNIT -I:

ARM Architecture: ARM Design Philosophy, Registers, Program Status Register, Instruction Pipeline, Interrupts and Vector Table, Architecture Revision, ARM Processor Families.

UNIT -II:

ARM Programming Model – I: Instruction Set: Data Processing Instructions, Addressing Modes, Branch, Load, Store Instructions, PSR Instructions, Conditional Instructions.

UNIT –III:

ARM Programming Model – II: Thumb Instruction Set: Register Usage, Other Branch Instructions, Data Processing Instructions, Single-Register and Multi Register Load-Store Instructions, Stack, Software Interrupt Instructions

UNIT -IV:

ARM Programming: Simple C Programs using Function Calls, Pointers, Structures, Integer and Floating Point Arithmetic, Assembly Code using Instruction Scheduling, Register Allocation, Conditional Execution and Loops.

UNIT -V:

Memory Management: Cache Architecture, Polices, Flushing and Caches, MMU, Page Tables, Translation, Access Permissions, Content Switch.

TEXT BOOKS:

1. ARM Systems Developer's Guides- Designing & Optimizing System Software – Andrew N. Sloss, Dominic Symes, Chris Wright, 2008, Elsevier.

REFERENCE BOOKS:

1. Embedded Microcomputer Systems, Real Time Interfacing – Jonathan W. Valvano – Brookes / Cole, 1999, Thomas Learning.

RADIO NAVIGATIONAL AIDS (ELECTIVE-I)

UNIT -I:

Navigational Systems: Review of Navigational Systems: Aircraft navigational system, Geometry of the earth. Navigation equation, Navigation errors, Radio navigation system types and Performance parameters, ILS System, Hyperbolic navigation systems, Loran, Omega, Decca Radio direction finding, DME, TACAN and VORTAC.

UNIT -II:

Inertial Navigation: Inertial navigation system, Sensing instruments: Accelerometer. Gyro-copes, Analytic and Gimbaled platforms, Mechanization, Error analysis, Alignment.

UNIT -III:

Global Positioning System (GPS) for Navigation: Overview of GPS, Reference systems. Satellite orbits, Signal structure, Geometric dilution of precision (GDOP), or Precision dilution of recision (PDOP), Satellite ephemeris, Satellite clock, Ionospheric group delay. Tropospheric group delay, Multipath errors and Receiver measurement errors.

UNIT -IV:

Differential GPS and WAAS: Standard and precise positioning service local area DGPS and Wide area DGPS errors, Wide Area Augmentation System (WAAS) architecture, Link budget and Data Capacity, Ranging function, Precision approach and error estimates.

UNIT -V:

GPS Navigational Applications: General applications of GPS, DGPS, Marine, Air and Land Navigation, Surveying, Mapping and Geographical information systems, Military and Space.

TEXT BOOKS:

- 1. Myron Kayton and Walter Friend, R. "Avionics Navigation Systems", Wiley, 1997
- 2. Parkinson. BW. Spilker "Global Positioning System Theory and Applications", Progress in Astronautics, Vol. I and II, 1996.

- 1. Hoffman. B., Wellenhof. H... Lichtenegger and J. Collins "GPS Theory and Practice", Springer Verlang Wien New York, 1992.
- 2. Elliot D. Kaplan "Understanding GPS Principles and Applications", Artech House. Inc., 1996.
- 3. Lieck Alfred. "GPS Satellite Surveying", John Wiley, 1990.

INTERNETWORKING (ELECTIVE - II)

UNIT -I:

Internetworking Concepts: Principles of Internetworking, Connectionless Internetworking, Application level Interconnections, Network level Interconnection, Properties of thee Internet, Internet Architecture, Wired LANS, Wireless LANs, Point-to-Point WANs, Switched WANs, Connecting Devices, TCP/IP Protocol Suite.

IP Address: Classful Addressing: Introduction, Classful Addressing, Other Issues, Sub-netting and Super-netting

Classless Addressing: Variable length Blocks, Sub-netting, Address Allocation. Delivery, Forwarding, and Routing of IP Packets: Delivery, Forwarding, Routing, Structure of Router. **ARP and RARP:** ARP, ARP Package, RARP.

UNIT -II:

Internet Protocol (IP): Datagram, Fragmentation, Options, Checksum, IP V.6.

Transmission Control Protocol (TCP): TCP Services, TCP Features, Segment, A TCP Connection, State Transition Diagram, Flow Control, Error Control, Congestion Control, TCP Times. **Stream Control Transmission Protocol (SCTP):** SCTP Services, SCTP Features, Packet Format, Flow Control, Error Control, Congestion Control.

Mobile IP: Addressing, Agents, Three Phases, Inefficiency in Mobile IP.

Classical TCP Improvements: Indirect TCP, Snooping TCP, Mobile TCP, Fast Retransmit/ Fast Recovery, Transmission/ Time Out Freezing, Selective Retransmission, Transaction Oriented TCP.

UNIT -III:

Unicast Routing Protocols (RIP, OSPF, and BGP): Intra and Inter-domain Routing, Distance Vector Routing, RIP, Link State Routing, OSPF, Path Vector Routing, BGP.

Multicasting and Multicast Routing Protocols: Unicast - Multicast- Broadcast, Multicast Applications, Multicast Routing, Multicast Link State Routing: MOSPF, Multicast Distance Vector: DVMRP.

UNIT -IV:

Domain Name System (DNS): Name Space, Domain Name Space, Distribution of Name Space, and DNS in the internet.

Remote Login TELNET: Concept, Network Virtual Terminal (NVT).

File Transfer FTP and TFTP: File Transfer Protocol (FTP).

Electronic Mail: SMTP and POP.

Network Management-SNMP: Concept, Management Components, World Wide Web- HTTP Architecture.

UNIT -V:

Multimedia: Digitizing Audio and Video, Network security, security in the internet firewalls. Audio and Video Compression, Streaming Stored Audio/Video, Streaming Live Audio/Video, Real-Time Interactive Audio/Video, RTP, RTCP, Voice Over IP. Network Security, Security in the Internet, Firewalls.

TEXT BOOKS:

- 1. TCP/IP Protocol Suite- Behrouz A. Forouzan, Third Edition, TMH
- 2. Internetworking with TCP/IP Comer 3 rd edition PHI

- 1. High performance TCP/IP Networking- Mahbub Hassan, Raj Jain, PHI, 2005
- 2. Data Communications & Networking B.A. Forouzan 2nd Edition TMH
- 3. High Speed Networks and Internets- William Stallings, Pearson Education, 2002.
- 4. Data and Computer Communications, William Stallings, 7th Edition., PEI.
- 5. The Internet and Its Protocols Adrian FArrel, Elsevier, 2005.

ADVANCED COMPUTER ARCHITECTURE (ELECTIVE -II)

UNIT -I:

Fundamentals of Computer Design: Fundamentals of Computer design, Changing faces of computing and task of computer designer, Technology trends, Cost price and their trends, Measuring and reporting performance, Quantitative principles of computer design, Amdahl's law.

Instruction set principles and examples- Introduction, Classifying instruction set- MEmory addressing-type and size of operands, Operations in the instruction set.

UNIT -II:

Pipelines: Introduction, Basic RISC instruction set, Simple implementation of RISC instruction set, Classic five stage pipe lined RISC processor, Basic performance issues in pipelining, Pipeline hazards, Reducing pipeline branch penalties.

Memory Hierarchy Design: Introduction, Review of ABC of cache, Cache performance, Reducing cache miss penalty, Virtual memory.

UNIT -III:

Instruction Level Parallelism the Hardware Approach: Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach, Branch prediction, high performance instruction delivery- hardware based speculation.

ILP Software Approach: Basic compiler level techniques, Static branch prediction, VLIW approach, Exploiting ILP, Parallelism at compile time, Cross cutting issues -Hardware verses Software.

UNIT -IV:

Multi Processors and Thread Level Parallelism: Multi Processors and Thread level Parallelism-Introduction, Characteristics of application domain, Systematic shared memory architecture, Distributed shared – memory architecture, Synchronization.

UNIT -V:

Inter Connection and Networks: Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters. **Intel Architecture:** Intel IA-64 ILP in embedded and mobile markets Fallacies and pit falls.

TEXT BOOKS:

1. John L. Hennessy, David A. Patterson - Computer Architecture: A Quantitative Approach, 3rd Edition, An Imprint of Elsevier.

- 1. John P. Shen and Miikko H. Lipasti Modern Processor Design : Fundamentals of Super Scalar Processors
- Computer Architecture and Parallel Processing Kai Hwang, Faye A.Brigs., MC Graw Hill.
- 3. Advanced Computer Architecture A Design Space Approach Dezso Sima, Terence Fountain, Peter Kacsuk , Pearson Ed.

EMBEDDED REAL TIME OPERATING SYSTEMS (ELECTIVE -II)

UNIT - I

Introduction: Introduction to UNIX/LINUX, Overview of Commands, File I/O,(open, create, close, Iseek, read, write), Process Control (fork, vfork, exit, wait, waitpid, exec).

UNIT-II

Real Time Operating Systems: Brief History of OS, Defining RTOS, The Scheduler, Objects, Services, Characteristics of RTOS, Defining a Task, asks States and Scheduling, Task Operations, Structure, Synchronization, Communication and Concurrency.

Defining Semaphores, Operations and Use, Defining Message Queue, States, Content, Storage, Operations and Use

UNIT -III:

Objects, Services and I/O: Pipes, Event Registers, Signals, Other Building Blocks, Component Configuration, Basic I/O Concepts, I/O Subsystem

UNIT -IV:

Exceptions, Interrupts and Timers: Exceptions, Interrupts, Applications, Processing of Exceptions and Spurious Interrupts, Real Time Clocks, Programmable Timers, Timer Interrupt Service Routines (ISR), Soft Timers, Operations.

UNIT -V

Case Studies of RTOS: RT Linux, MicroC/OS-II, Vx Works, Embedded Linux, and Tiny OS, and Android OS.

TEXT BOOKS:

Real Time Concepts for Embedded Systems – Qing Li, Elsevier, 2011

- 1. Embedded Systems- Architecture, Programming and Design Rajkamal, 2007, TMH.
- 2. Advanced UNIX Programming Richard Stevens
- 3. Embedded Linux: Hardware, Software and Interfacing Dr. Craig Hollabaugh

M. Tech. (ECE /DECE/DECS)-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. – I Year –I Sem (ECE/DECS)

SIGNAL PROCESSING LAB

Note:

- A. Minimum of 10 Experiments have to be conducted
- B. All Experiments may be Simulated using MATLAB and to be verified theoretically.
- 1. Basic Operations on Signals, Generation of Various Signals and finding its FFT.
- 2. Program to verify Decimation and Interpolation of a given Sequences.
- 3. Program to Convert CD data into DVD data
- 4. Generation of Dual Tone Multiple Frequency (DTMF) Signals
- 5. Plot the Periodogram of a Noisy Signal and estimate PSD using Periodogram and Modified Periodogram methods
- 6. Estimation of Power Spectrum using Bartlett and Welch methods
- 7. Verification of Autocorrelation Theorem
- 8. Parametric methods (Yule-Walker and Burg) of Power Spectrum Estimation
- 9. Estimation of data series using Nth order Forward Predictor and comparing to the Original Signal
- 10. Design of LPC filter using Levinson-Durbin Algorithm
- 11. Computation of Reflection Coefficients using Schur Algorithm
- 12. To study Finite Length Effects using Simulink
- 13. Design and verification of Matched filter
- 14. Adaptive Noise Cancellation using Simulink
- 15. Design and Simulation of Notch Filter to remove 60Hz Hum/any unwanted frequency component of given Signal (Speech/ECG)

IMAGE AND VIDEO PROCESSING

UNIT -I:

Fundamentals of Image Processing and Image Transforms: Basic steps of Image Processing System Sampling and Quantization of an image, Basic relationship between pixels.

Image Segmentation: Segmentation concepts, Point, Line and Edge Detection, Thresholding, Region based segmentation.

UNIT -II:

Image Enhancement: Spatial domain methods: Histogram processing, Fundamentals of Spatial filtering, Smoothing spatial filters, Sharpening spatial filters.

Frequency domain methods: Basics of filtering in frequency domain, Image smoothing, Image sharpening, Selective filtering.

UNIT -III:

Image Compression: Image compression fundamentals - Coding Redundancy, Spatial and Temporal redundancy, Compression models: Lossy & Lossless, Huffman coding, Bit plane coding, Transform coding, Predictive coding, Wavelet coding, Lossy Predictive coding, JPEG Standards.

UNIT -IV:

Basic Steps of Video Processing: Analog Video, Digital Video. Time-Varying Image Formation models: Three-Dimensional Motion Models, Geometric Image Formation, Photometric Image Formation, Sampling of Video signals, Filtering operations.

UNIT -V:

2-D Motion Estimation: Optical flow, General Methodologies, Pixel Based Motion Estimation, Block-Matching Algorithm, Mesh based Motion Estimation, Global Motion Estimation, Region based Motion Estimation, Multi resolution motion estimation, Waveform based coding, Block based transform coding, Predictive coding, Application of motion estimation in Video coding.

TEXT BOOKS:

- 1. Digital Image Processing Gonzaleze and Woods, 3rd Ed., Pearson.
- 2. Video Processing and Communication Yao Wang, Joem Ostermann and Ya–quin Zhang. 1st Ed., PH Int.

- 1. Digital Image Processing and Analysis-Human and Computer Vision Application with CVIP Tools Scotte Umbaugh, 2nd Ed, CRC Press, 2011.
- 2. Digital Video Processing M. Tekalp, Prentice Hall International
- 3. Digital Image Processing S.Jayaraman, S.Esakkirajan, T.Veera Kumar-TMH, 2009.
 - 4. Multidimentional Signal, Image and Video Processing and Coding John Woods, 2nd Ed, Elsevier
 - 5. Digital Image Processing with MATLAB and Labview Vipula Singh, Elsevier.
 - 6. Video Demystified A Hand Book for the Digital Engineer Keith Jack, 5th Ed., Elsevier

CODING THEORY AND TECHNIQUES

UNIT -I:

Coding for Reliable Digital Transmission and Storage: Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

Linear Block Codes: Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT -II:

Cyclic Codes: Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding ,Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT -III:

Convolutional Codes: Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT -IV:

Burst –Error-Correcting Codes: Decoding of Single-Burst error Correcting Cyclic codes, Single-Burst-Error-Correcting Cyclic codes, Burst-Error-Correcting Convolutional Codes, Bounds on Burst Error-Correcting Capability, Interleaved Cyclic and Convolutional Codes, Phased-Burst –Error-Correcting Cyclic and Convolutional codes.

UNIT -V:

BCH – Codes: BCH code- Definition, Minimum distance and BCH Bounds, Decoding Procedure for BCH Codes- Syndrome Computation and Iterative Algorithms, Error Location Polynomials and Numbers for single and double error correction

TEXT BOOKS:

- 1. Error Control Coding- Fundamentals and Applications –Shu Lin, Daniel J.Costello, Jr, Prentice Hall. Inc.
- 2. Error Correcting Coding Theory-Man Young Rhee- 1989, McGraw-Hill Publishing.

- 1. Digital Communications-Fundamental and Application Bernard Sklar, PE.
- 2. Digital Communications- John G. Proakis, 5th Ed., 2008, TMH.
- 3. Introduction to Error Control Codes-Salvatore Gravano-oxford
- Error Correction Coding Mathematical Methods and Algorithms Todd K.Moon, 2006, Wiley India.
- 5. Information Theory, Coding and Cryptography Ranjan Bose, 2nd Ed. 2009, TMH.

OPTICAL COMMUNICATIONS TECHNOLOGY

UNIT -I:

Signal propagation in Optical Fibers: Geometrical Optics approach and Wave Theory approach, Loss and Bandwidth, Chromatic Dispersion, Non Linear effects- Stimulated Brillouin and Stimulated Raman Scattering, Propagation in a Non-Linear Medium, Self-Phase Modulation and Cross Phase Modulation, Four Wave Mixing, Principle of Solitons.

UNIT -II:

Fiber Optic Components for Communication & Networking: Couplers, Isolators and Circulators, Multiplexers, Bragg Gratings, Fabry-Perot Filters, Mach Zender Interferometers, Arrayed Waveguide Grating, Tunable Filters, High Channel Count Multiplexer Architectures, Optical Amplifiers, Direct and External Modulation Transmitters, Pump Sources for Amplifiers, Optical Switches and Wavelength Converters.

UNIT -III:

Modulation and Demodulation: Signal formats for Modulation, Subcarrier Modulation and Multiplexing, Optical Modulations – Duobinary, Single Side Band and Multilevel Schemes, Ideal and Practical receivers for Demodulation, Bit Error Rates, Timing Recovery and Equalization, Reed-Solomon Codes for Error Detection and Correction.

UNIT -IV:

Transmission System Engineering: System Model, Power Penalty in Transmitter and Receiver, Optical Amplifiers, Crosstalk and Reduction of Crosstalk, Cascaded Filters, Dispersion Limitations and Compensation Techniques.

UNIT -V:

Fiber Non-linearities and System Design Considerations: Limitation in High Speed and WDM Systems due to Non-linearities in Fibers, Wavelength Stabilization against Temperature Variations, Overall System Design considerations – Fiber Dispersion, Modulation, Non-Linear Effects, Wavelengths, All Optical Networks.

TEXT BOOKS:

- 1. Optical Networks: A Practical Perspective Rajiv Ramaswami and Kumar N. Sivarajan, 2nd Ed., 2004, Elsevier Morgan Kaufmann Publishers (An Imprint of Elsevier).
- 2. Optical Fiber Communications Gerd Keiser, 3rd Ed., 2000, McGraw Hill.

- 1. Optical Fiber Communications: Principles and Practice John.M.Senior, 2nd Ed., 2000, PE.
- 2. Fiber Optics Communication Harold Kolimbris, 2nd Ed., 2004, PEI
- 3. Optical Networks: Third Generation Transport Systems Uyless Black, 2nd Ed., 2009, PEI
- 4. Optical Fiber Communications Govind Agarwal, 2nd Ed., 2004, TMH.
- 5. Optical Fiber Communications and Its Applications S.C.Gupta, 2004, PHI.

WIRELESS COMMUNICATIONS AND NETWORKS

UNIT -I:

The Cellular Concept-System Design Fundamentals: Introduction, Frequency Reuse, Channel Assignment Strategies, Handoff Strategies- Prioritizing Handoffs, Practical Handoff Considerations, Interference and system capacity – Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference, Power Control for Reducing interference, Trunking and Grade of Service, Improving Coverage & Capacity in Cellular Systems- Cell Splitting, Sectoring.

UNIT -II:

Mobile Radio Propagation: Large-Scale Path Loss: Introduction to Radio Wave Propagation, Free Space Propagation Model, Relating Power to Electric Field, The Three Basic Propagation Mechanisms, Reflection-Reflection from Dielectrics, Brewster Angle, Reflection from prefect conductors, Ground Reflection (Two-Ray) Model, Diffraction-Fresnel Zone Geometry, Knife-edge Diffraction Model, Multiple knife-edge Diffraction, Scattering, Outdoor Propagation Models- Longley-Ryce Model, Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model, Indoor Propagation Models-Partition Iosses (Same Floor), Partition Iosses between Floors, Log-distance path Ioss model, Ericsson Multiple Breakpoint Model, Attenuation Factor Model, Signal penetration into buildings, Ray Tracing and Site Specific Modeling.

UNIT -III:

Mobile Radio Propagation: Small -Scale Fading and Multipath: Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke's model for flat fading, spectral shape due to Doppler spread in Clarke's model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT -IV:

Equalization and Diversity: Introduction, Fundamentals of Equalization, Training A Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Non-linear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer, Algorithms for adaptive equalization-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. Diversity Techniques-Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, Practical Space Diversity Consideration-Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

UNIT -V:

Wireless Networks: Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access Control, Comparision of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, Hiper Lan, WLL.

TEXT BOOKS:

- 1. Wireless Communications, Principles, Practice Theodore, S. Rappaport, 2nd Ed., 2002, PHI.
- 2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press.
- 3. Mobile Cellular Communication Gottapu Sasibhushana Rao, Pearson Education, 2012.

- 1. Principles of Wireless Networks Kaveh Pah Laven and P. Krishna Murthy, 2002, PE
- 2. Wireless Digital Communications Kamilo Feher, 1999, PHI.
- 3. Wireless Communication and Networking William Stallings, 2003, PHI.
- 4. Wireless Communication Upen Dalal, Oxford Univ. Press
- 5. Wireless Communications and Networking Vijay K. Gary, Elsevier.

SPEECH PROCESSING (ELECTIVE – III)

UNIT -I:

Fundamentals of Digital Speech Processing: Anatomy & Physiology of Speech Organs, The process of Speech Production, Acoustic Phonetics, Articulatory Phonetics, The Acoustic Theory of Speech Production- Uniform lossless tube model, effect of losses in vocal tract, effect of radiation at lips, Digital models for speech signals.

UNIT -II:

Time Domain Models for Speech Processing: Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate, Speech Vs Silence discrimination using energy and zero crossing, Pitch period estimation using a parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

UNIT -III:

Linear Predictive Coding (LPC) Analysis: Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance Method, Solution of LPC Equations: Cholesky Decomposition Solution for Covariance Method, Durbin's Recursive Solution for the Autocorrelation Equations, Comparison between the Methods of Solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT -IV:

Homomorphic Speech Processing: Introduction, Homomorphic Systems for Convolution: Properties of the Complex Cepstrum, Computational Considerations, The Complex Cepstrum of Speech, Pitch Detection, Formant Estimation, The Homomorphic Vocoder.

Speech Enhancement: Nature of interfering sounds, Speech enhancement techniques: Single Microphone Approach: spectral subtraction, Enhancement by re-synthesis, Comb filter, Wiener filter, Multi microphone Approach.

UNIT-V:

Automatic Speech & Speaker Recognition: Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System

Hidden Markov Model (HMM) for Speech: Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS,

Speaker Recognition: Recognition techniques, Features that distinguish speakers, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System.

TEXT BOOKS:

- 1. Digital Processing of Speech Signals L.R. Rabiner and S. W. Schafer. Pearson Education.
- 2. Speech Communications: Human & Machine Douglas O'Shaughnessy, 2nd Ed., Wiley India, 2000.
- 3. Digital Processing of Speech Signals. L.R Rabinar and R W Jhaung, 1978, Pearson Education.

- 1. Discrete Time Speech Signal Processing: Principles and Practice Thomas F. Quateri, 1st Ed., PE.
- 2. Speech & Audio Signal Processing- Ben Gold & Nelson Morgan, 1st Ed., Wiley.

OPTICAL NETWORKS (ELECTIVE – III)

UNIT -I:

Client Layers of Optical Networks: SONET / SDH – Multiplexing, Frame Structure, Physical Layer, Infrastructure, ATM – Functions, Adaptation layers, QoS, Flow Control Signaling and Routing, IP – Routing, QoS, MPLS, Storage Area Networks – ESCON, Fiber Channel, HIPPI, Gigabit Ethernet.

UNIT -II:

WDM network Elements and Design: Optical Line Terminals and Amplifiers, Add/Drop Multiplexers, Optical Cross Connects, Cost trade-offs in Network Design, LTD and RWA Problems, Dimensioning — Wavelength Routing Networks, Statistical and Maximum Load Dimensioning Models.

UNIT -III:

Network Control and Management: Network Management Functions, Optical Layer Services and Interfacing, Layers within Optical Layer, Multivendor Interoperability, Performance and Fault Management, Configuration Management, Optical Safety.

Unit -IV:

Network Survivability: Basic Concepts of Survivability, Protection in SONET/SDH Links and Rings, Protection in IP Networks, Optical Layer Protection – Service Classes, Protection Schemes, Interworking between Layers.

UNIT -V:

Access Networks and Photonic Packet Switching: Network Architecture, Enhanced HFC, FTTC, Photonic Packet Switching – OTDM, Synchronization, Header Processing, Buffering, Burst Switching, Test Beds.

TEXT BOOKS:

- 1. Optical Networks: A Practical Perspective Rajiv Ramaswami and Kumar N. Sivarajan, 2nd Ed., 2004, Elsevier Morgan Kaufmann Publishers (An Imprint of Elsevier).
- 2. WDM Optical Networks: Concepts, Design and Algorithms C. Siva Rama Murthy and Mohan Guruswamy 2nd Ed., 2003, PEI.
- 3. Optical Networks: Third Generation Transport Systems Uyless Black, 2nd Ed., 2009, PEI.

- 1. Optical Fiber Communications: Principles and Practice John.M.Senior, 2nd Ed., 2000, PE.
- 2. Fiber Optics Communication Harold Kolimbris, 2nd Ed., 2004, PEI.
- 3. Networks Timothy S. Ramteke, 2 ed., 2004, PEI.
- 4. Optical Fiber Communications Govind Agarwal, 2nd Ed., 2004, TMH.
- 5. Optical Fiber Communications and Its Applications S.C.Gupta, 2004, PHI.
- 6. Telecommunication System Engineering -Roger L.Freeman, 4th Ed., John Wiley, 2004.

RADAR SIGNAL PROCESSING (ELECTIVE - III)

UNIT -I:

Introduction: Radar Block Diagram, Radar Equation, Information Available from Radar Echo. Review of Radar Range Performance—General Radar Range Equation, Radar Detection with Noise Jamming, Beacon and Repeater Equations, Bistatic Radar.

Matched Filter Receiver – Impulse Response, Frequency Response Characteristic and its Derivation, Matched Filter and Correlation Function, Correlation Detection and Cross-Correlation Receiver, Efficiency of Non-Matched Filters, Matched Filter for Non-White Noise.

UNIT -II:

Detection of Radar Signals in Noise: Detection Criteria – Neyman-Pearson Observer, Likelihood-Ratio Receiver, Inverse Probability Receiver, Sequential Observer, Detectors – Envelope Detector, Logarithmic Detector, I/Q Detector. Automatic Detection - CFAR Receiver, Cell Averaging CFAR Receiver, CFAR Loss, CFAR Uses in Radar. Radar Signal Management – Schematics, Component Parts, Resources and Constraints.

UNIT -III:

Waveform Selection [3, 2]: Radar Ambiguity Function and Ambiguity Diagram – Principles and Properties; Specific Cases – Ideal Case, Single Pulse of Sine Wave, Periodic Pulse Train, Single Linear FM Pulse, Noise Like Waveforms, Waveform Design Requirements, Optimum Waveforms for Detection in Clutter, Family of Radar Waveforms.

UNIT -IV

Pulse Compression in Radar Signals: Introduction, Significance, Types, Linear FM Pulse Compression – Block Diagram, Characteristics, Reduction of Time Side lobes, Stretch Techniques, Generation and Decoding of FM Waveforms – Block Schematic and Characteristics of Passive System, Digital Compression, SAW Pulse Compression.

UNIT V:

Phase Coding Techniques: Principles, Binary Phase Coding, Barker Codes, Maximal Length Sequences (MLS/LRS/PN), Block Diagram of a Phase Coded CW Radar.

Poly Phase Codes: Frank Codes, Costas Codes, Non-Linear FM Pulse Compression, Doppler Tolerant PC Waveforms – Short Pulse, Linear Period Modulation (LPM/HFM), Sidelobe Reduction for Phase Coded PC Signals.

TEXT BOOKS:

- 1. Radar Handbook M.I. Skolnik, 2nd Ed., 1991, McGraw Hill.
- 2. Radar Design Principles : Signal Processing and The Environment Fred E. Nathanson, 2nd Ed., 1999, PHI.
- 3. Introduction to Radar Systems M.I. Skolnik, 3rd Ed., 2001, TMH.

- 1. Radar Principles Peyton Z. Peebles, Jr., 2004, John Wiley.
- 2. Radar Signal Processing and Adaptive Systems R. Nitzberg, 1999, Artech House.
- 3. Radar Design Principles F.E. Nathanson, 1st Ed., 1969, McGraw Hill.

NETWORK SECURITY AND CRYPTOGRAPHY (ELECTIVE -IV)

UNIT -I:

Introduction: Attacks, Services and Mechanisms, Security attacks, Security services, A Model for Internetwork security.

Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques.

Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operations.

UNIT -II:

Encryption Algorithms: Triple DES, International Data Encryption algorithm, Blowfish, RC5, CAST-128, RC2, Characteristics of Advanced Symmetric block cifers.

Conventional Encryption: Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT -III:

Public Key Cryptography: Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptograpy.

Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat's and Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT -IV:

Message Authentication and Hash Functions: Authentication requirements and functions, Message Authentication. Hash functions. Security of Hash functions and MACs.

Hash and Mac Algorithms: MD File, Message digest Algorithm, Secure Hash Algorithm, RIPEMD-160, HMAC.

Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards.

Authentication Applications: Kerberos, X.509 directory Authentication service.

Electronic Mail Security: Pretty Good Privacy, S/MIME.

UNIT -V:

IP Security: Overview, Architecture, Authentication, Encapsulating Security Payload, Combining security Associations, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction.

Intruders, Viruses and Worms: Intruders, Viruses and Related threats.

Fire Walls: Fire wall Design Principles, Trusted systems.

TEXT BOOKS:

- 1. Cryptography and Network Security: Principles and Practice William Stallings, Pearson Education.
- 2. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.

- Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
- 2. Network Security Private Communication in a Public World by Charlie Kaufman, Radia Perlman and Mike Speciner, Pearson/PHI.
- 3. Principles of Information Security, Whitman, Thomson.
- 4. Network Security: The complete reference, Robert Bragg, Mark Rhodes, TMH
- 5. Introduction to Cryptography, Buchmann, Springer.

SATELLITE COMMUNICATIONS (ELECTIVE - IV)

UNIT -I:

Communication Satellite: Orbit and Description: A Brief history of satellite Communication, Satellite Frequency Bands, Satellite Systems, Applications, Orbital Period and Velocity, effects of Orbital Inclination, Azimuth and Elevation, Coverage angle and slant Range, Eclipse, Orbital Perturbations, Placement of a Satellite in a Geo-Stationary orbit.

UNIT -II:

Satellite Sub-Systems: Attitude and Orbit Control system, TT&C subsystem, Attitude Control subsystem, Power systems, Communication subsystems, Satellite Antenna Equipment.

Satellite Link: Basic Transmission Theory, System Noise Temperature and G/T ratio, Basic Link Analysis, Interference Analysis, Design of satellite Links for a specified C/N, (With and without frequency Re-use), Link Budget.

UNIT -III:

Propagation Effects: Introduction, Atmospheric Absorption, Cloud Attenuation, Tropospheric and Ionospeheric Scintillation and Low angle fading, Rain induced attenuation, rain induced cross polarization interference.

Multiple Access: Frequency Division Multiple Access (FDMA) - Intermodulation, Calculation of C/N, Time Division Multiple Access (TDMA) - Frame Structure, Burst Structure, Satellite Switched TDMA, On-board Processing, Demand Assignment Multiple Access (DAMA) — Types of Demand Assignment, Characteristics, CDMA Spread Spectrum Transmission and Reception.

UNIT -IV:

Earth Station Technology: Transmitters, Receivers, Antennas, Tracking Systems, Terrestrial Interface, Power Test Methods, Lower Orbit Considerations.

Satellite Navigation and Global Positioning Systems: Radio and Satellite Navigation, GPS Position Location Principles, GPS Receivers, GPS C/A Code Accuracy, Differential GPS.

UNIT -V:

Satellite Packet Communications: Message Transmission by FDMA: M/G/1 Queue, Message Transmission by TDMA, PURE ALOHA-Satellite Packet Switching, Slotted Aloha, Packet Reservation, Tree Algorithm.

TEXT BOOKS:

- 1. Satellite Communications –Timothy Pratt, Charles Bostian, Jeremy Allnutt, 2nd Edition, 2003, John Wiley & Sons.
- 2. Satellite Communications Engineering Wilbur, L. Pritchand, Robert A. Nelson and Heuri G. Suyderhoud, 2nd Ed., Pearson Publications.
- 3. Digital Satellite Communications-Tri.T.Ha, 2nd Edition, 1990, Mc.Graw Hill.

- 1. Satellite Communications-Dennis Roddy, 2nd Edition, 1996, McGraw Hill.
- 2. Satellite Communications: Design Principles M. Richcharia, 2nd Ed., BSP, 2003.
- 3. Digital Satellite Communications Tri. T. Ha, 2nd Ed., MGH, 1990.
- 4. Fundamentals of Satellite Communications K. N. Raja Rao, PHI, 2004.

DIGITAL SIGNAL PROCESSORS AND ARCHITECTURES (ELECTIVE -IV)

UNIT -I:

Introduction to Digital Signal Processing: Introduction, A Digital signal-processing system, The sampling process, Discrete time sequences. Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear time-invariant systems, Digital filters, Decimation and interpolation.

Computational Accuracy in DSP Implementations: Number formats for signals and coefficients in DSP systems, Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors, Compensating filter.

UNIT -II:

Architectures for Programmable DSP Devices: Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation UNIT, Programmability and Program Execution, Speed Issues, Features for External interfacing.

UNIT -III:

Programmable Digital Signal Processors: Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX instructions and Programming, On-Chip Peripherals, Interrupts of TMS320C54XX processors, Pipeline operation of TMS320C54XX Processors.

UNIT -IV:

Analog Devices Family of DSP Devices: Analog Devices Family of DSP Devices – ALU and MAC block diagram, Shifter Instruction, Base Architecture of ADSP 2100, ADSP-2181 high performance Processor.

Introduction to Blackfin Processor - The Blackfin Processor, Introduction to Micro Signal Architecture, Overview of Hardware Processing Units and Register files, Address Arithmetic Unit, Control Unit, Bus Architecture and Memory, Basic Peripherals.

UNIT -V:

Interfacing Memory and I/O Peripherals to Programmable DSP Devices: Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).

TEXT BOOKS:

- 1. Digital Signal Processing Avtar Singh and S. Srinivasan, Thomson Publications, 2004.
- 2. A Practical Approach to Digital Signal Processing K Padmanabhan, R. Vijayarajeswaran, Ananthi. S, New Age International, 2006/2009
- 3. Embedded Signal Processing with the Micro Signal Architecture Publisher: Woon-Seng Gan, Sen M. Kuo, Wiley-IEEE Press, 2007

- 1. Digital Signal Processors, Architecture, Programming and Applications B. Venkataramani and M. Bhaskar, 2002, TMH.
- 2. Digital Signal Processing Jonatham Stein, 2005, John Wiley.
- 3. DSP Processor Fundamentals, Architectures & Features Lapsley et al. 2000, S. Chand & Co.
- 4. Digital Signal Processing Applications Using the ADSP-2100 Family by The Applications Engineering Staff of Analog Devices, DSP Division, Edited by Amy Mar, PHI
- 5. The Scientist and Engineer's Guide to Digital Signal Processing by Steven W. Smith, Ph.D., California Technical Publishing, ISBN 0-9660176-3-3, 1997
- Embedded Media Processing by David J. Katz and Rick Gentile of Analog Devices, Newnes, ISBN 0750679123, 2005

ADVANCED COMMUNICATIONS LAB

Note:

- A. Minimum of 10 Experiments have to be conducted
- B. All Experiments may be Simulated using MATLAB and to be verified using related training kits.
 - 1. Measurement of Bit Error Rate using Binary Data
 - 2. Verification of minimum distance in Hamming code
 - 3. Determination of output of Convolutional Encoder for a given sequence
 - 4. Determination of output of Convolutional Decoder for a given sequence
 - 5. Efficiency of DS Spread- Spectrum Technique
 - 6. Simulation of Frequency Hopping (FH) system
 - 7. Effect of Sampling and Quantization of Digital Image
 - 8. Verification of Various Transforms (FT / DCT/ Walsh / Hadamard) on a given Image (Finding Transform and Inverse Transform)
 - 9. Point, Line and Edge detection techniques using derivative operators.
 - 10. Implementation of FIR filter using DSP Trainer Kit (C-Code/ Assembly code)
- 11. Implementation of IIR filter using DSP Trainer Kit (C-Code/ Assembly code)
 - 12. Determination of Losses in Optical Fiber
- Observing the Waveforms at various test points of a mobile phone using Mobile Phone Trainer
- Study of Direct Sequence Spread Spectrum Modulation & Demodulation using CDMA-DSS-BER Trainer
 - 15. Study of ISDN Training System with Protocol Analyzer
 - 16. Characteristics of LASER Diode.